DOI QR코드

DOI QR Code

Comonotonic Uncertain Vector and Its Properties

Li, Shengguo;Zhang, Bo;Peng, Jin

  • Received : 2012.08.17
  • Accepted : 2013.03.06
  • Published : 2013.03.31

Abstract

This paper proposes a new concept of comonotonicity of uncertain vector based on the uncertainty theory. In order to understand the comonotonicity of uncertain vector, some equivalent definitions are presented. Following the proposed concept, some basic properties of comonotonic uncertain vector are investigated. In addition, the operational law is given for calculating the uncertainty distributions of monotone functions of comonotonic uncertain variables. With the help of operational law, the comonotonic uncertain vector is applied to the premium pricing problems. At last, some numerical examples are given to illustrate the application.

Keywords

Uncertainty Theory;Uncertain Vector;Uncertain Distribution;Comonotonicity

References

  1. Benvenuti, P. and Vivona, D. (2000), Comonotone aggregation operators, Rendiconti di mathematica e delle sue applicazioni, 20, 323-336.
  2. Bernadette, B., Julio, G., and Luis, M. (2002), Technologies for Constructing Intelligent Systems 2: Tools, Springer-Verlag, Heidelberg.
  3. Cheung, K. C. (2008), Characterization of comonotonicity using convex order, Insurance: Mathematics and Economics, 43(3), 403-406. https://doi.org/10.1016/j.insmatheco.2008.08.002
  4. Choudhry, M. (2006), An Introduction to Value-at-Risk (4th ed.), John Wiley and Sons, Hoboken, NJ.
  5. Dhaene, J., Denuit, M., Goovaerts, M. J., Kaas, R., and Vyncke, D. (2002), The concept of comonotonicity in actuarial science and finance: theory, Insurance: Mathematics and Economics, 31(1), 3-33. https://doi.org/10.1016/S0167-6687(02)00134-8
  6. Dhaene, J., Vanduffel, S., Goovaerts, M. J., Kaas, R., Tang, Q., and Vyncke, D. (2006), Risk measure and comonotonicity: a review, Stochastic Models, 22, 573-606. https://doi.org/10.1080/15326340600878016
  7. Dhaene, J., Wang, S., Young, V., and Goovaerts, M. J. (2000), Comonotonicity and maximal stop-loss premiums, Bulletin of the Swiss Association of Actuaries, 2, 99-113.
  8. Ekelanda, I., Galichon, A., and Henry, M. (2012), Comonotonic measures of multivariate risks, Mathematical Finance, 22, 109-132. https://doi.org/10.1111/j.1467-9965.2010.00453.x
  9. Kast, R. and Lapied, A. (2003), Comonotonic book making and attitudes to uncertainty, Mathematical Social Sciences, 46(1), 1-7. https://doi.org/10.1016/S0165-4896(02)00088-4
  10. Liu, B. (2007), Uncertainty Theory (2nd ed.), Springer-Verlag, Berlin.
  11. Liu, B. (2009), Some research problems in uncertainty theory, Journal of Uncertain Systems, 3(1), 3-10.
  12. Liu, B. (2010a), Uncertain risk analysis and uncertain reliability analysis, Journal of Uncertain Systems, 4(3), 163-170.
  13. Liu, B. (2010b), Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin.
  14. Artzner, P., Delbaen, F., Eber, J., and Heath, D. (1999), Coherent measures of risk, Mathematical Finance, 9(3), 203-228. https://doi.org/10.1111/1467-9965.00068
  15. Benvenuti, P. and Vivona, D. (1996), General theory of the fuzzy integral, Mathware and Soft Computing, 3(1/2), 199-209.
  16. Ludkovski, M. and Ruschendorf, L. (2008), On comonotonicity of pareto optimal risk sharing, Statistics & Probability Letters, 78, 1181-1188. https://doi.org/10.1016/j.spl.2007.11.031
  17. Mesiar, R. and Ouyang, Y. (2009), General chebyshev type inequalities for sugeno integrals, Fuzzy Sets and Systems, 160(1), 58-64. https://doi.org/10.1016/j.fss.2008.04.002
  18. Modave, F. and Grabisch, M. (1998), Preference representation by the choquet integral: the commensurability hypothesis, Proceedings of the 7th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Paris, France, 164-171.
  19. Narukawa, Y. and Torra, V. (2009), Multidimensional generalized fuzzy integral, Fuzzy Sets and Systems, 160(6), 802-815. https://doi.org/10.1016/j.fss.2008.10.006
  20. Peng, J. (2009), Value at risk and tail value at risk in uncertain environment, Proceedings of the 8th International Conference on Information and Management Sciences, Kunming, China, 787-793.
  21. Peng, J. (2013), Risk metrics of loss function for uncertain system, Fuzzy Optimization and Decision Making, 12(1), 53-64. https://doi.org/10.1007/s10700-012-9146-5
  22. Peng, J. and Li, S. (2010), Spectral measures of uncertain risk, Proceedings of the 1st International Conference on Uncertainty Theory, Urumchi, China, 115-121.
  23. Peng, J. and Li, S. (2011), Distortion risk measures of uncertain systems, Proceedings of the 9th International Conference on Reliability, Maintainability and Safety, Guiyang, China, 460-467.
  24. Peng, Y. (2010), A new type of risk measuring and insurance pricing based on uncertainty theory, Journal of Huanggang Normal University, 30(6), 27-31.
  25. Roell, A. (1987), Risk aversion in Quiggin and Yaari's rank-order model of choice under uncertainty, The Economic Journal, 97, 143-159. https://doi.org/10.2307/3038236
  26. Szego, G. P. (2004), Risk Measures for the 21st Century, John Wiley and Sons, Hoboken, NJ.
  27. Wakker, P. P. (1996), The sure-thing principle and the comonotonic sure-thing principle: an axiomatic analysis, Journal of Mathematics and Economics, 25(2), 213-227. https://doi.org/10.1016/0304-4068(95)00721-0
  28. Wang, S. and Dhaene, J. (1998), Comonotonicity, correlation order and premium principles, Insurance: Mathematics and Economics, 22(3), 235-242. https://doi.org/10.1016/S0167-6687(97)00040-1
  29. Yaari, M. E. (1987), The dual theory of choice under risk, Econometrica, 55(1), 95-115. https://doi.org/10.2307/1911158
  30. Zadeh, L. A. (1965), Fuzzy sets, Information and Control, 8, 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X