DOI QR코드

DOI QR Code

A New Topology of Solutions of Chemical Equations

  • Risteski, Ice B.
  • Received : 2011.04.04
  • Accepted : 2013.01.21
  • Published : 2013.04.20

Abstract

In this work is induced a new topology of solutions of chemical equations by virtue of point-set topology in an abstract stoichiometrical space. Subgenerators of this topology are the coefficients of chemical reaction. Complex chemical reactions, as those of direct reduction of hematite with a carbon, often exhibit distinct properties which can be interpreted as higher level mathematical structures. Here we used a mathematical model that exploits the stoichiometric structure, which can be seen as a topology too, to derive an algebraic picture of chemical equations. This abstract expression suggests exploring the chemical meaning of topological concept. Topological models at different levels of realism can be used to generate a large number of reaction modifications, with a particular aim to determine their general properties. The more abstract the theory is, the stronger the cognitive power is.

Keywords

Topology;Subgenerators;Basis;Dimension;Equations

References

  1. Munkres, J. R. Topology, 2nd ed.; Prentice-Hall Inc.: Englewood Cliffs, 2000.
  2. Spanier, E. H. Algebraic Topology; Springer Verlag: New York 1981.
  3. Risteski, I. B. New Discovered Paradoxes in Theory of Balancing Chemical Equations. Mat. & Technol. 2011, 45, 503.
  4. Risteski, I. B. A New Approach to Balancing Chemical Equations. SIAM Problems & Solutions 2007, 1−10.
  5. Risteski, I. B. A New Pseudoinverse Matrix Method for Balancing Chemical Equations and Their Stability. J. Korean Chem. Soc. 2008, 52, 223. https://doi.org/10.5012/jkcs.2008.52.3.223
  6. Bottomley, J. Note on a Method for Determining the Coefficients in Chemical Equations. Chem. News J. Phys. Sci. 1878, 37, 110.
  7. Barker, G. F. A Textbook of Elementary Chemistry, Theoretical and Inorganic; John P. Morton & Co.: Louisville, 1891; p 70.
  8. Endslow, A. W. S. Balancing Chemical Equations, J. Chem. Educ. 1931, 8, 2453. https://doi.org/10.1021/ed008p2453
  9. Jones, M. Problem 71-25*: Balancing Chemical Equations. SIAM Rev. 1971, 13, 571.
  10. Crocker, C. Application of Diophantine Equations to Problems in Chemistry. J. Chem. Educ. 1968, 45, 731. https://doi.org/10.1021/ed045p731
  11. Krishnamurthy, E. V. Generalized Matrix Inverse for Automatic Balancing of Chemical Equations. Int. J. Math. Educ. Sci. Technol. 1978, 9, 323. https://doi.org/10.1080/0020739780090310
  12. Das, S. C. A Mathematical Method of Balancing a Chemical Equation. Int. J. Math. Educ. Sci. Technol. 1986, 17, 191. https://doi.org/10.1080/0020739860170209
  13. Yde, P. B. Abolish the Half Reaction Method. Int. J. Math. Educ. Sci. Technol. 1989, 20, 533. https://doi.org/10.1080/0020739890200406
  14. Yde, P. B. Defer the Oxidation Number Method. Int. J. Math. Educ. Sci. Technol. 1990, 21, 27. https://doi.org/10.1080/0020739900210104
  15. Johnson, O. C. Negative Bonds and Rule for Balancing Equations. Chem. News J. Phys. Sci. 1880, 42, 51.
  16. Subramaniam, R.; Goh, K. G.; Chia, L. S. A Chemical Equation as a Representation of a Class of Linear Diophantine Equations and a System of Homogeneous Linear Equations. Int. J. Math. Educ. Sci. Technol. 1996, 27, 323. https://doi.org/10.1080/0020739960270301
  17. Risteski, I. B. A New Nonsingular Matrix Method for Balancing Chemical Equations and Their Stability. Int. J. Math. Manuscripts 2007, 1, 180.
  18. Moore, E. H. On the Reciprocal of the General Algebraic Matrix. Bull. Amer. Math. Soc. 1920, 26, 394.
  19. Penrose, R. A Generalized Inverse for Matrices. Proc. Cambridge Phil. Soc. 1955, 51, 406. https://doi.org/10.1017/S0305004100030401
  20. Risteski, I. B. A New Generalized Matrix Inverse Method for Balancing Chemical Equations and Their Stability. Bol. Soc. Quim. Mex. 2008, 2, 104.
  21. Von Neumann, J. Uber Adjungierte Funktionaloperatoren. Ann. of Math. 1932, 33, 294. https://doi.org/10.2307/1968331
  22. Von Neumann, J. Continuous Geometry; Princeton Univ. Press: Princeton, 1960.
  23. Murray, F. J.; Von Neumann, J. On Rings of Operators. Ann. of Math. 1936, 37, 116. https://doi.org/10.2307/1968693
  24. Risteski, I. B. A New Singular Matrix Method for Balancing Chemical Equations and Their Stability. J. Chin. Chem. Soc. 2009, 56, 65.
  25. Drazin, M. P. Pseudo-inverses in Associative Rings and Semigroups. Amer. Math. Monthly 1958, 65, 506. https://doi.org/10.2307/2308576
  26. Risteski, I. B. A New Complex Vector Method for Balancing Chemical Equations. Mat. & Technol. 2010, 44, 193.
  27. Bell, E. T. Exponential Polynomials. Ann. of Math. 1934, 35, 258. https://doi.org/10.2307/1968431
  28. Godel, K. What is Cantor's Continuum Problem? Amer. Math. Monthly 1947, 54, 515. https://doi.org/10.2307/2304666
  29. Trajkov, S. Teorija na metalurškite procesi; Univ. Kiril & Metodij: Skopje, 1970.
  30. Haralampiev, G. A. Teorija na metalurgichnite procesi; Tehnika: Sofia, 1987.
  31. Risteski, I. B. The New Algebraic Criterions to Even out the Chemical Reactions. In 22nd October Meeting of Miners & Metallurgists, Bor, Oct 1−2, 1990; pp 313−318.
  32. Beckenbach, E.; Bellman, R. An Introduction to Inequalities; The Math. Assoc. America: Washington D. C., 1961.