DOI QR코드

DOI QR Code

The quantitative analysis of combustive gases on fire by remote passive open path FT-IR spectrometer

Passive open-path FT-IR spectrometer를 사용한 원거리 화재 연소 가스 정량 분석

  • Cho, Nam Wook (Korea Institute of Construction Technology) ;
  • Cho, Won Bo (College of Pharmacy, Dongduck Women's University) ;
  • Kim, Hyo Jin (College of Pharmacy, Dongduck Women's University)
  • Received : 2012.09.19
  • Accepted : 2013.03.29
  • Published : 2013.04.25

Abstract

It was studied to analyze the $CO_2$, CO, $SO_2$ standard gases of combustion gases by the open path FT-IR spectrometer with passive mode for remote analysis of air pollutant and volcano gases without IR lamp. As result, it was confirmed to have good linearity with more than 0.9 as correlation coefficients on the calibration curve of $CO_2$, CO concentration by MLR method. But in the case of $SO_2$, because the correlation coefficients were 0.88, the linearity could be lower. Finally, the concentration of three gases was predicted on in-site fire experiment under the condition of quantitative analysis. It could measure high $CO_2$ concentration as predicted result, but didn't measure the CO and $SO_2$. According to the result, it was possible to measure the combustion gases to long distance by only open path FT-IR spectrometer without infrared lamp.

References

  1. J. W. Childers., E. L. Thompson., D. B. Harris, Atmos. Env., 35, 1923-1936 (2001). https://doi.org/10.1016/S1352-2310(00)00545-8
  2. T. E. L. Smith, M. J. Wooster1, M. Tattaris1 and D. W. T. Griffith, Atmos. Meas. Tech., 4, 97-116 (2011). https://doi.org/10.5194/amt-4-97-2011
  3. B. K. Hart, R. J. Berry and P. R. Griffiths, Environ. Sci. Technol., 34, 1346-1351 (2000). https://doi.org/10.1021/es990439v
  4. A. Beil, R. Daum, G. Matz and R. Harig, Herausgeber, Proceedings of SPIE., 3493, 32-43 (1998).
  5. D. Fu, K. A. Walker, K. Sung, C. D. Boone, M.-A. Soucy and P. F. Bernath, Quant. Spectrosc. Ra., 103, 362-370 (2007). https://doi.org/10.1016/j.jqsrt.2006.05.006
  6. P. R. Griffiths, S. Limin and A. B. Leytem., Anal Bioanal Chem., 393, 45-50 (2009). https://doi.org/10.1007/s00216-008-2429-6
  7. Z. Bacsik and J. Mink, Appl. Spectrosc. Rev., 39, 295-363 (2004). https://doi.org/10.1081/ASR-200030192
  8. D. W. T. Griffith, R. Leuning, O. T. Denmead and I. M. Jamie, Atmos. Environ., 36, 1833-1842 (2002). https://doi.org/10.1016/S1352-2310(02)00139-5
  9. J. G. Goode, R. J. Yokelson, D. E. Ward, R. A. Susott, R. E. Babbitt, A. Davies and W. Min Hao, J. Geophys. Res.-Atmos., 105(D17), 22147-22166 (2000). https://doi.org/10.1029/2000JD900287
  10. T. M. Gerlach, K. A. McGee, A. J. Sutton and T. Elias, Hawaii, Geophys. Res. Lett., 25, 2675-2678 (1998). https://doi.org/10.1029/98GL02030