DOI QR코드

DOI QR Code

A Sensorless PMDC Motor Speed Controller with a Logical Overcurrent Protection

  • Guerreiro, M.G. (ESTSetubal, Polytechnic Institute of Setubal) ;
  • Foito, D. (ESTSetubal, Polytechnic Institute of Setubal) ;
  • Cordeiro, A. (ISEL, Polytechnic Institute of Lisboa)
  • Received : 2012.03.15
  • Published : 2013.05.20

Abstract

A method to control the speed or the torque of a permanent-magnet direct current motor is presented. The rotor speed and the external torque estimation are simultaneously provided by appropriate observers. The sensorless control scheme is based on current measurement and switching states of power devices. The observers performances are dependent on the accurate machine parameters knowledge. Sliding mode control approach was adopted for drive control, providing the suitable switching states to the chopper power devices. Despite the predictable chattering, a convenient first order switching function was considered enough to define the sliding surface and to correspond with the desired control specifications and drive performance. The experimental implementation was supported on a single dsPIC and the controller includes a logic overcurrent protection.

References

  1. C. Attaianese, A. Perfetto, G. Tomasso, "Robust position control of DC drives by means of $H{\infty}$ controllers," in Proc. Inst. Elect. Eng.-Elect. Power Appl., Vol. 146, No. 4, pp. 391-396, Jul. 1999. https://doi.org/10.1049/ip-epa:19990342
  2. J. L. Flores, J. Reger, H. S. Ramirez, "Speed-sensorless tracking control of a DC-motor via a double Buck-converter," 45th IEEE Conference on Decision and Control, pp. 6229-6234, Dec. 2006.
  3. P. Chevrel and S. Siala, "Robust DC-motor speed control without any mechanical sensor," in Proc. IEEE Int. Conf. Control Appl., pp. 244-246, Oct. 1997.
  4. G. S. Buja, R. Menis, and M. I. Valla, "disturbance torque estimation in a sensorless DC drive," IEEE Trans. Ind. Electron., Vol. 42, No. 4, pp. 351-357, Aug. 1995. https://doi.org/10.1109/41.402473
  5. A. Pisano, A. Davila, L. Fridman, and E. Usai, "Cascade control of PM DC drives via second-order sliding-mode technique," IEEE Trans. Ind. Electron., Vol. 55, No. 11, pp. 3846-3854, Nov. 2008. https://doi.org/10.1109/TIE.2008.2002715
  6. A.-M. M. A. Mohamed, "Sliding mode control design and application to permanent magnet DC motor speed control," MEPCON'2006 - The Eleventh International Middle East Power Systems Conference, pp. 25-29, Sep. 2006.
  7. J. E. Slotine and W. Li, Applied Nonlinear Control I, Prentice Hall, 1991.
  8. V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electromechanical Systems, Taylor & Francis, 1999.
  9. Z. Q. Zhu, "A simple method for measuring cogging torque in permanent magnetic machines," PES'2009 - IEEE Power & Energy Society General Meeting, 2009.
  10. J. H. Taylor and C. Chan, "Matlab Tools for linear and nonlinear systems stability theorem implementation," in Proc. IEEE Conference on Control Applications, USA, 1997.
  11. R. Letor, A. Tesla, and S. Di Caro, "Estimation of the shaft position on low-cost DC actuators," in Proc. ISIE, pp. 440-445, Jul. 2010.
  12. A. Consoli, G. Bottiglieri, R. Letor, R. Ruggeri, A. Testa, and S. De Caro, "Sensorless position control of DC actuators for automotive applications," IEEE- 39th Annual Meeting Industry Applications Conference, Vol. 2, pp. 1217-1224, Oct. 2004.
  13. J. Scott; J. McLeish, and W. H. Round, "Speed control with low armature loss for very small sensorless brushed DC motors," IEEE Trans. Ind. Electron., Vol. 56, No 4, pp. 1223-1229, Apr. 2009. https://doi.org/10.1109/TIE.2008.2007046
  14. J. G. Llorente, E. I. O. Rivera, A. S. Llinas, and E. J. Brea, "Analyzing the optimal matching of DC motors to photovoltaic modules via DC-DC converters," IEEE 25th in Proc. APEC, pp. 1062-1068, Feb. 2010.
  15. T. Castagnet and J. Nicolai, "Digital control for brush DC motor," IEEE Trans. Ind. Appl., Vol. 30, No. 4, pp. 883-888, Jul./Aug. 1994. https://doi.org/10.1109/28.297903
  16. J. L. Flores, J. Reger, and H. S. Ramiez, "Load torque estimation and passivity-based control of a boost-converter/DC-motor combination," IEEE Trans. Contr. Syst. Technol., Vol. 18, No. 6, pp. 1398-1405, Nov. 2010.
  17. G. Mirzaeva, R. E. Betz, and T. J. Summers, "Evaluation of current density in DC motor brushes for mining machines based on air-gap field measurement," IEEE Trans. Ind. Appl., Vol. 46, No. 4, pp. 1255-1263, Jul./Aug. 2010. https://doi.org/10.1109/TIA.2010.2049555
  18. S. I. Amer and M. M. Salem, "A comparison of different intelligent control techniques for a PM DC motor," Journal Power Electronics, Vol. 5, No. 1, pp. 1-10, Jan. 2005.
  19. C.-L. Hwang, L.-J. Chang, and Y.-S. Yu, "Network-based fuzzy decentralized sliding-mode control for car-like mobile robots," IEEE Trans. Ind. Electron., Vol. 54, No. 1, pp. 574-585, Feb. 2007. https://doi.org/10.1109/TIE.2006.888806
  20. J. O. Jang, "Neural network saturation compensation for DC motor systems," IEEE Trans. Ind. Electron., Vol.54, No.3, pp. 1763-1767 Jun. 2007.
  21. G. G. Rigatos, "Adaptive fuzzy control of DC motors using state and output feedback: Application to DC Motors of robotics Manipulators," Proc. International Symposium on Advanced Intelligent Systems, ISIS, pp. 1-6, 2007.
  22. D. Kukolj, F. Kulic, and E. Levi, "Design of the speed controller for sensorless electric drives based on AI techniques: a comparative study," Artificial Intelligence in Engineering - Elsevier, Vol. 14, pp. 165-174, May 2000. https://doi.org/10.1016/S0954-1810(00)00010-8
  23. S K. Narebda, "Neural networks for control: theory and practice," in Proc IEEE, Vol. 84, No 10, pp. 1385-1406, Oct. 1996. https://doi.org/10.1109/5.537106
  24. H. Butler, G. Honderd, and J. van Amerongen, "Model reference adaptive control of a direct drive DC motor," IEEE Control Syst. Mag., Vol. 9, No. 1, pp. 80-84, Jan. 1989. https://doi.org/10.1109/37.16756
  25. S. F. Alyaqout, P. Y. Papalambros and A. G. Ulsoy, "Combined robust design and robust control of an electric DC motor," IEEE/ASME IEEE Trans. Mechatronics, Vol. 16, No. 3, pp. 574-582, Jun. 2011. https://doi.org/10.1109/TMECH.2010.2047652
  26. S. Ye and K. T. Chau, "Chaoization of DC motors for industrial mixing," IEEE Trans. Ind. Electron., Vol. 54, No 4, pp. 2024-2032, Aug. 2007.
  27. J. L. Flores, H. S. Ramirez, E. F. C. Lopez, and M. A. C. Ordaz, "Sensorless passivity based control of a DC motor via a solar powered sepic converter-full bridge combination," Journal of Power Electronics, Vol. 11, No. 5, pp. 743-750 , Sep. 2011. https://doi.org/10.6113/JPE.2011.11.5.743
  28. C. C. Tsai, H.-C. Huang, and S. C. Lin, "Adaptive neural network control of a self-balancing two-wheeled scooter," IEEE Trans. Ind. Electron., Vol. 57, No. 4, pp. 1420-1428, Apr. 2010. https://doi.org/10.1109/TIE.2009.2039452
  29. R. Kahoul, Y. Azzouz, P. Marchal, and B. Mazari, "New behavioral modeling for DC motor armatures applied to automotive EMC characterization," IEEE Trans. Electromagn. Compat., Vol. 52, No 4, pp. 888-901, Nov. 2010. https://doi.org/10.1109/TEMC.2010.2057430

Cited by

  1. Finite Control Set Model Predictive Speed Control of a DC Motor vol.2016, 2016, https://doi.org/10.1155/2016/9571972