DOI QR코드

DOI QR Code

A CERTAIN SUBCLASS OF JANOWSKI TYPE FUNCTIONS ASSOCIATED WITH κ-SYMMETRIC POINTS

  • Received : 2012.03.20
  • Published : 2013.01.31

Abstract

We introduce a subclass $S_s^{({\kappa})}$(A,B) (-1 ${\leq}$ B < A ${\leq}$ 1) of functions which are analytic in the open unit disk and close-to-convex with respect to ${\kappa}$-symmetric points. We give some coefficient inequalities, integral representations and invariance properties of functions belonging to this class.

Keywords

close-to-convex functions;Janowski type;sakaguchi functions;k-symmetric points

References

  1. T. N. Shanmugam, Convolution and differential subordination, Int. J. Math. Math. Sci. 12 (1989), no. 2, 333-340. https://doi.org/10.1155/S0161171289000384
  2. H. Silverman and E. M. Silvia, Subclasses of starlike functions subordinate to convex functions, Canad. J. Math. 37 (1985), no. 1, 48-61. https://doi.org/10.4153/CJM-1985-004-7
  3. E. M. Silvia, Subclass of close-to-convex functions, Int. J. Math. Math. Sci. 6 (1983), no. 3, 449-458. https://doi.org/10.1155/S0161171283000393
  4. J. Sokol et al., On some subclass of starlike functions with respect to symmetric points, Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz. 12 (1991), 65-73.
  5. J. Stankiewicz, Some remarks on functions starlike with respect to symmertic points, Ann. Univ. Mariae Curie-Sklodowska Sect. A 19 (1970), 53-59.
  6. T. V. Sudharsan, P. Balasubrahmanyam, and K. G. Subramanian, On functions starlike with respect to symmetric and conjugate points, Taiwanese J. Math. 2 (1998), no. 1, 57-68. https://doi.org/10.11650/twjm/1500406894
  7. J. Thangamani, On starlike functions with respect to symmetric points, Indian J. Pure Appl. Math. 11 (1980), no. 3, 392-405.
  8. N. E. Cho, O. S. Kwon, and S. Owa, Certain subclasses of Sakaguchi functions, Southeast Asian Bull. Math. 17 (1993), no. 2, 121-126.
  9. R. M. Goel and B. S. Mehrok, Some invariance properties of a subclass of close-to-convex functions, Indian J. Pure Appl. Math. 12 (1981), no. 10, 1240-1249.
  10. S. S. Miller and P. T. Mocanu. Differential Subordinations: Theory and Applications, Marcel Dekker Inc, New York, Basel, 1999.
  11. R. Parvatham and S. Radha, On ${\alpha}$-starlike and ${\alpha}$-close-to-convex functions with respect to n-symmetric points, Indian J. Pure Appl. Math. 17 (1986), no. 9, 1114-1122.
  12. V. Ravichandran, Starlike and convex functions with respect to conjugate points, Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 20 (2004), no. 1, 31-37.
  13. K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75. https://doi.org/10.2969/jmsj/01110072

Cited by

  1. A note on starlike functions associated with symmetric points vol.29, pp.5-6, 2018, https://doi.org/10.1007/s13370-018-0593-1

Acknowledgement

Supported by : Kyungsung University