DOI QR코드

DOI QR Code

EINSTEIN LIGHTLIKE HYPERSURFACES OF A LORENTZIAN SPACE FORM WITH A SEMI-SYMMETRIC METRIC CONNECTION

Jin, Dae Ho

  • Received : 2011.07.28
  • Published : 2013.01.31

Abstract

In this paper, we prove a classification theorem for Einstein lightlike hypersurfaces M of a Lorentzian space form ($\bar{M}$(c), $\bar{g}$) with a semi-symmetric metric connection subject such that the second fundamental forms of M and its screen distribution S(TM) are conformally related by some non-zero constant.

Keywords

screen homothetic;Einstein manifold;semi-symmetric metric connection

References

  1. B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.
  2. T. Y. Thomas, On closed spaces of constant mean curvature, Amer. J. Math. 58 (1936), no. 4, 702-704. https://doi.org/10.2307/2371240
  3. M. M. Tripathi, A new connection in a Riemannian manifold, Int. Electron. J. Geom. 1 (2008), no. 1, 15-24.
  4. K. Yano, On semi-symmetric metric connections, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.
  5. C. Atindogbe and K. L. Duggal, Conformal screen on lightlike hypersurfaces, Int. J. Pure Appl. Math. 11 (2004), no. 4, 421-442.
  6. G. de Rham, Sur la reductibilite d'un espace de Riemannian, Comm. Math. Helv. 26 (1952), 328-344. https://doi.org/10.1007/BF02564308
  7. K. L. Duggal, On scalar curvature in lightlike geometry, J. Geom. Phys. 57 (2007), no. 2, 473-481. https://doi.org/10.1016/j.geomphys.2006.04.001
  8. K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
  9. K. L. Duggal and D. H. Jin, Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.
  10. K. L. Duggal and D. H. Jin, A Classification of Einstein lightlike hypersurfaces of a Lorentzian space form, J. Geom. Phys. 60 (2010), no. 12, 1881-1889. https://doi.org/10.1016/j.geomphys.2010.07.005
  11. K. L. Duggal and B. Sahin, Differential Geometry of Lightlike Submanifolds, Frontiers in Mathematics, Birkhauser, 2010.
  12. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-time, Cambridge University Press, Cambridge, 1973.
  13. H. A. Hayden, Subspace of a space with torsion, Proc. London Math. Soc. 34 (1932), 27-50.
  14. A. Fialkow, Hypersurfaces of a space of constant curvature, Ann. of Math. 39 (1938), no. 4, 762-785. https://doi.org/10.2307/1968462
  15. D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Applications, vol. 366, Kluwer Acad. Publishers, Dordrecht, 1996.