DOI QR코드

DOI QR Code

Polarization Selective Blazed Grating Employing Metal-slit Arrays

금속 슬릿 배열로 구성된 편광 선택 가능한 블레이즈드 회절 격자

  • 정영진 (울산과학대학교 전기전자공학부)
  • Received : 2013.03.25
  • Accepted : 2013.04.19
  • Published : 2013.04.25

Abstract

A polarization selective blazed grating employing metal-slit arrays was proposed. Nano-scale metal-slits were applied to the micro-scale blazed grating to give the functionality of polarization selection. Case study was carried out for the proposed structure utilizing numerical FDTD (Finite Difference Time Domain method) simulation. Diffraction efficiency of 77.61% and polarization extinction ratio of 8.99 was achieved with arbitrary parameters and diffraction efficiency of 64.22% and polarization extinction ratio of 81.09 was achieved with other parameters to enhance extinction ratio.

Acknowledgement

Supported by : 울산과학대학

References

  1. K. K. Sharma, Optics: Principles and Applications (Academic Press, 2006)
  2. Y. J. Jung, D. Park, S. Koo, S. Yu, and N. Park, "Metal slit array Fresnel lens for wavelength-scale optical coupling to nanophotonic waveguides," Opt. Express 17, 18852-18857 (2009). https://doi.org/10.1364/OE.17.018852
  3. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815-6820 (2005). https://doi.org/10.1364/OPEX.13.006815
  4. H. X. Yuan, B. X. Xu, B. Lukiyanchuk, and T. C. Chong, "Principle and design approach of flat nano-metallic surface plasmonic lens," Applied Physics A-Materials Science & Processing 89, 397-401 (2007). https://doi.org/10.1007/s00339-007-4124-4
  5. H. X. Yuan, B. X. Xu, and T. C. Chong, "Focusing effect and performance analysis of flat metal slit array lens," in Optical Data Storage (2007), TuE2.
  6. Z. J. Sun, "Beam splitting with a modified metallic nano-optic lens," Appl. Phys. Lett. 89, 261119 (2006). https://doi.org/10.1063/1.2425049
  7. T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, "Subwavelength imaging by metallic slab lens with nanoslits," Appl. Phys. Lett. 91, 201501 (2007). https://doi.org/10.1063/1.2811711
  8. N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small-divergence semiconductor lasers by plasmonic collimation," Nature Photonics 2, 564-570 (2008). https://doi.org/10.1038/nphoton.2008.152
  9. N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Quantum cascade lasers with integrated plasmonic antennaarray collimators," Opt. Express 16, 19447-19461 (2008). https://doi.org/10.1364/OE.16.019447
  10. S. Arnold, E. Gardner, D. Hansen, and R. Perkins, "An improved polarizing beamsplitter LCOS projection display based on wire-grid polarizers," SID Symposium Digest of Technical Papers 32, 1282-1285 (2001).
  11. L. Zhang, C. Li, F. Zhang, and L. Shi, "Design and fabrication of metal-wire nanograting used as polarizing beam splitter in optical telecommunication," Journal of Optoelectronics and Advanced Materials 8, 847-850 (2006).
  12. C. Pentico, E. Gardner, D. Hansen, and R. Perkins, "New, high performance, durable polarizers for projection displays," SID Symposium Digest of Technical Papers 33, 730-733(2002).
  13. D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Eeng, H. Ming, L. Zhang, and W. Liu, "Polarization properties of subwavelength metallic gratings in visible light band," Appl. Phys. B 85, 139-143 (2006). https://doi.org/10.1007/s00340-006-2403-y
  14. Lumerical Solution Inc., "Nanowire grid polarizer as compact photonic polarization control elements-design and optimization with FDTD solutions,", http://www.lumerical.com