DOI QR코드

DOI QR Code

A FIXED POINT APPROACH TO THE STABILITY OF THE GENERALIZED POLYNOMIAL FUNCTIONAL EQUATION OF DEGREE 2

Jin, Sun-Sook;Lee, Yang-Hi

  • Received : 2011.04.14
  • Published : 2013.04.30

Abstract

In this paper, we investigate a stability of the functional equation $$\sum^3_{i=0}_3C_i(-1)^{3-i}f(ix+y)=0$$ by using the fixed point theory in the sense of L. C$\breve{a}$dariu and V. Radu.

Keywords

generalized polynomial functional equation of degree 2;fixed point method;Hyers-Ulam stability

References

  1. Y. H. Lee and K. W. Jun, On the stability of approximately additive mappings, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1361-1369. https://doi.org/10.1090/S0002-9939-99-05156-4
  2. Y. H. Lee and K. W. Jun, A note on the Hyers-Ulam-Rassias stability of Pexider equation, J. Korean Math. Soc. 37 (2000), no. 1, 111-124.
  3. Y. H. Lee and S. M. Jung, A fixed point approach to the stability of an n-dimensional mixed-type additive and quadratic functional equation, Abstr. Appl. Anal. 2012 (2012), Article ID 482936, 14 pages.
  4. Y. H. Lee and S. M. Jung, A fixed point approach to the generalized Hyer-Ulam stability of a mixed type functional equation, Int. J. Pure Appl. Math. 81 (2012), no. 2, 359-375.
  5. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  6. I. A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj-Napoca, 1979.
  7. S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960.
  8. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
  9. L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math. 4 (2003), no. 1, Art. 4, 7 pp.
  10. L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara Ser. Mat.-Inform. 41 (2003), no. 1, 25-48.
  11. J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
  12. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436. https://doi.org/10.1006/jmaa.1994.1211
  13. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  14. S. S. Jin and Y. H. Lee, A fixed point approach to the stability of the Cauchy additive and quadratic type functional equation, J. Appl. Math. 2011 (2011), Article ID 817079, 16 pages.
  15. S. S. Jin and Y. H. Lee, A fixed point approach to the stability of the quadratic-additive functional equation, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 18 (2011), no. 4, 313-328. https://doi.org/10.7468/jksmeb.2011.18.4.313
  16. S. S. Jin and Y. H. Lee, A fixed point approach to the stability of the mixed type functional equation, Honam Math. J. 34 (2012), no. 1, 19-34. https://doi.org/10.5831/HMJ.2012.34.1.19
  17. K.-W. Jun and Y.-H. Lee, A generalization of the Hyers-Ulam-Rassias stability of the Pexiderized quadratic equations. II, Kyungpook Math. J. 47 (2007), no. 1, 91-103.
  18. K.-W. Jun, Y.-H. Lee, and J.-R. Lee, On the stability of a new Pexider type functional equation, J. Inequal. Appl. 2008 (2008), ID 816963, 22 pages. https://doi.org/10.1155/2008/816963
  19. G.-H. Kim, On the stability of functional equations with square-symmetric operation, Math. Inequal. Appl. 4 (2001), no. 2, 257-266.
  20. H.-M. Kim, On the stability problem for a mixed type of quartic and quadratic functional equation, J. Math. Anal. Appl. 324 (2006), no. 1, 358-372. https://doi.org/10.1016/j.jmaa.2005.11.053
  21. Y.-H. Lee, On the Hyers-Ulam-Rassias stability of the generalized polynomial function of degree 2, J. Chuncheong Math. Soc. 22 (2009), no. 2, 201-209.
  22. Y.-H. Lee, On the stability of the monomial functional equation, Bull. Korean Math. Soc. 45 (2008), no. 2, 397-403. https://doi.org/10.4134/BKMS.2008.45.2.397
  23. Y. H. Lee and K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), no. 1, 305-315. https://doi.org/10.1006/jmaa.1999.6546
  24. Y. H. Lee and K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of the Pexider equation, J. Math. Anal. Appl. 246 (2000), no. 2, 627-638. https://doi.org/10.1006/jmaa.2000.6832

Cited by

  1. STABILITY OF A GENERALIZED POLYNOMIAL FUNCTIONAL EQUATION OF DEGREE 2 IN NON-ARCHIMEDEAN NORMED SPACES vol.26, pp.4, 2013, https://doi.org/10.14403/jcms.2013.26.4.887