DOI QR코드

DOI QR Code

ON A FAST ITERATIVE METHOD FOR APPROXIMATE INVERSE OF MATRICES

Soleymani, Fazlollah

  • 투고 : 2012.03.06
  • 발행 : 2013.04.30

초록

This paper studies a computational iterative method to find accurate approximations for the inverse of real or complex matrices. The analysis of convergence reveals that the method reaches seventh-order convergence. Numerical results including the comparison with different existing methods in the literature will also be considered to manifest its superiority in different types of problems.

키워드

Hotelling-Bodewig algorithm;ill-conditioned;approximate inverse;initial matrix

참고문헌

  1. A. Ben-Israel and T. N. E. Greville, Generalized Inverses, Springer, 2nd edition, 2003.
  2. W. Cao and B. Guo, Preconditioning for the p-version boundary element method in three dimension with tringaular elements, J. Korean Math. Soc. 41 (2004), no. 2, 345-368. https://doi.org/10.4134/JKMS.2004.41.2.345
  3. H. Chen and Y. Wang, A family of higher-order convergent iterative methods for computing the Moore-Penrose inverse, Appl. Math. Comput. 218 (2011), no. 8, 4012-4016. https://doi.org/10.1016/j.amc.2011.05.066
  4. en.wikipedia.org/wiki/Invertible_matrix.
  5. J. M. Garnett, A. Ben-Israel, and S. S. Yau, A hyperpower iterative method for computing matrix products involving the generalized inverse, SIAM J. Numer. Anal. 8 (1971), 104-109. https://doi.org/10.1137/0708013
  6. H. Hotelling, Analysis of a complerx statistocal variable into principal components, J. Educ. Psysh. 24 (1933), 498-520. https://doi.org/10.1037/h0070888
  7. E. V. Krishnamurthy and S. K. Sen, Numerical Algorithms, Computations in science and engineering. Affiliated East-West Press Pvt. Ltd., New Delhi, 1986.
  8. H.-B. Li, T.-Z. Huang, Y. Zhang, X.-P. Liu, and T.-X. Gu, Chebyshev-type methods and preconditioning techniques, Appl. Math. Comput. 218 (2011), no. 2, 260-270. https://doi.org/10.1016/j.amc.2011.05.036
  9. W. Li and Z. Li, A family of iterative methods for computing the approximate inverse of a square matrix and inner inverse of a non-square matrix, Appl. Math. Comput. 215 (2010), no. 9, 3433-3442. https://doi.org/10.1016/j.amc.2009.10.038
  10. M. Monsalve and M. Raydan, A new inversion-free method for a rational matrix equation, Linear Algebra Appl. 433 (2010), no. 1, 64-71. https://doi.org/10.1016/j.laa.2010.02.006
  11. Y. Nakatsukasa, Z. Bai, and F. Gygi, Optimizing Halley's iteration for computing the matrix polar decomposition, SIAM. J. Matrix Anal. Appl. 31 (2010), no. 5, 2700-2720. https://doi.org/10.1137/090774999
  12. V. Pan and R. Schreiber, An improved Newton iteration for the generalized inverse of a matrix, with applications, SIAM J. Sci. Statist. Comput. 12 (1991), no. 5, 1109-1130. https://doi.org/10.1137/0912058
  13. I. Pavaloiu and E. Catina, Remarks on some Newton and Chebyshev-type methods for approximation eigenvalues and eigenvectors of matrices, Comput. Sci. J. Moldova 7 (1999), no. 1, 3-17.
  14. S. M. Rump, Inversion of extremely ill-conditioned matrices in floating-point, Japan J. Indust. Appl. Math. 26 (2009), no. 2-3, 249-277. https://doi.org/10.1007/BF03186534
  15. G. Schulz, Iterative Berechnung der Reziproken matrix, Z. Angew. Math. Mech. 13 (1933), 57-59. https://doi.org/10.1002/zamm.19330130111
  16. S. Wolfram, The Mathematica Book, 5th edition, Wolfram Media, 2003.
  17. J. H. Yun, Comparison results for the preconditioned Gauss-Seidel methods, Commun. Korean Math. Soc. 27 (2012), no. 1, 207-215. https://doi.org/10.4134/CKMS.2012.27.1.207
  18. A. Ben-Israel and D. Cohen, On iterative computation of generalized inverses and associated projections, SIAM J. Numer. Anal. 3 (1966), 410-419. https://doi.org/10.1137/0703035

피인용 문헌

  1. Four-Point Optimal Sixteenth-Order Iterative Method for Solving Nonlinear Equations vol.2013, 2013, https://doi.org/10.1155/2013/850365
  2. Numerical implementation of the microplane constitutive model for shape memory alloys 2017, https://doi.org/10.1177/1464420717708486
  3. On the extension of Householder’s method for weighted Moore–Penrose inverse vol.231, 2014, https://doi.org/10.1016/j.amc.2014.01.021
  4. Solving Nondifferentiable Nonlinear Equations by New Steffensen-Type Iterative Methods with Memory vol.2014, 2014, https://doi.org/10.1155/2014/795628
  5. Comparison of linear solvers for equilibrium geochemistry computations vol.21, pp.1, 2017, https://doi.org/10.1007/s10596-016-9600-5
  6. An improved Schulz-type iterative method for matrix inversion with application vol.36, pp.8, 2014, https://doi.org/10.1177/0142331214528350
  7. Stable time step estimates for NURBS-based explicit dynamics vol.295, 2015, https://doi.org/10.1016/j.cma.2015.03.017
  8. Weighting Shepard-type operators vol.36, pp.2, 2017, https://doi.org/10.1007/s40314-015-0263-y
  9. A Matrix Iteration for Finding Drazin Inverse with Ninth-Order Convergence vol.2014, 2014, https://doi.org/10.1155/2014/137486
  10. A Class of Kung–Traub-Type Iterative Algorithms for Matrix Inversion vol.2, pp.4, 2016, https://doi.org/10.1007/s40819-015-0083-1
  11. Geometrical Inverse Preconditioning for Symmetric Positive Definite Matrices vol.4, pp.3, 2016, https://doi.org/10.3390/math4030046