Soleymani, Fazlollah

  • 투고 : 2012.03.06
  • 발행 : 2013.04.30


This paper studies a computational iterative method to find accurate approximations for the inverse of real or complex matrices. The analysis of convergence reveals that the method reaches seventh-order convergence. Numerical results including the comparison with different existing methods in the literature will also be considered to manifest its superiority in different types of problems.


Hotelling-Bodewig algorithm;ill-conditioned;approximate inverse;initial matrix


  1. A. Ben-Israel and T. N. E. Greville, Generalized Inverses, Springer, 2nd edition, 2003.
  2. W. Cao and B. Guo, Preconditioning for the p-version boundary element method in three dimension with tringaular elements, J. Korean Math. Soc. 41 (2004), no. 2, 345-368.
  3. H. Chen and Y. Wang, A family of higher-order convergent iterative methods for computing the Moore-Penrose inverse, Appl. Math. Comput. 218 (2011), no. 8, 4012-4016.
  5. J. M. Garnett, A. Ben-Israel, and S. S. Yau, A hyperpower iterative method for computing matrix products involving the generalized inverse, SIAM J. Numer. Anal. 8 (1971), 104-109.
  6. H. Hotelling, Analysis of a complerx statistocal variable into principal components, J. Educ. Psysh. 24 (1933), 498-520.
  7. E. V. Krishnamurthy and S. K. Sen, Numerical Algorithms, Computations in science and engineering. Affiliated East-West Press Pvt. Ltd., New Delhi, 1986.
  8. H.-B. Li, T.-Z. Huang, Y. Zhang, X.-P. Liu, and T.-X. Gu, Chebyshev-type methods and preconditioning techniques, Appl. Math. Comput. 218 (2011), no. 2, 260-270.
  9. W. Li and Z. Li, A family of iterative methods for computing the approximate inverse of a square matrix and inner inverse of a non-square matrix, Appl. Math. Comput. 215 (2010), no. 9, 3433-3442.
  10. M. Monsalve and M. Raydan, A new inversion-free method for a rational matrix equation, Linear Algebra Appl. 433 (2010), no. 1, 64-71.
  11. Y. Nakatsukasa, Z. Bai, and F. Gygi, Optimizing Halley's iteration for computing the matrix polar decomposition, SIAM. J. Matrix Anal. Appl. 31 (2010), no. 5, 2700-2720.
  12. V. Pan and R. Schreiber, An improved Newton iteration for the generalized inverse of a matrix, with applications, SIAM J. Sci. Statist. Comput. 12 (1991), no. 5, 1109-1130.
  13. I. Pavaloiu and E. Catina, Remarks on some Newton and Chebyshev-type methods for approximation eigenvalues and eigenvectors of matrices, Comput. Sci. J. Moldova 7 (1999), no. 1, 3-17.
  14. S. M. Rump, Inversion of extremely ill-conditioned matrices in floating-point, Japan J. Indust. Appl. Math. 26 (2009), no. 2-3, 249-277.
  15. G. Schulz, Iterative Berechnung der Reziproken matrix, Z. Angew. Math. Mech. 13 (1933), 57-59.
  16. S. Wolfram, The Mathematica Book, 5th edition, Wolfram Media, 2003.
  17. J. H. Yun, Comparison results for the preconditioned Gauss-Seidel methods, Commun. Korean Math. Soc. 27 (2012), no. 1, 207-215.
  18. A. Ben-Israel and D. Cohen, On iterative computation of generalized inverses and associated projections, SIAM J. Numer. Anal. 3 (1966), 410-419.

피인용 문헌

  1. Four-Point Optimal Sixteenth-Order Iterative Method for Solving Nonlinear Equations vol.2013, 2013,
  2. Numerical implementation of the microplane constitutive model for shape memory alloys 2017,
  3. On the extension of Householder’s method for weighted Moore–Penrose inverse vol.231, 2014,
  4. Solving Nondifferentiable Nonlinear Equations by New Steffensen-Type Iterative Methods with Memory vol.2014, 2014,
  5. Comparison of linear solvers for equilibrium geochemistry computations vol.21, pp.1, 2017,
  6. An improved Schulz-type iterative method for matrix inversion with application vol.36, pp.8, 2014,
  7. Stable time step estimates for NURBS-based explicit dynamics vol.295, 2015,
  8. Weighting Shepard-type operators vol.36, pp.2, 2017,
  9. A Matrix Iteration for Finding Drazin Inverse with Ninth-Order Convergence vol.2014, 2014,
  10. A Class of Kung–Traub-Type Iterative Algorithms for Matrix Inversion vol.2, pp.4, 2016,
  11. Geometrical Inverse Preconditioning for Symmetric Positive Definite Matrices vol.4, pp.3, 2016,