Magnetic Nanoparticle Immobilized N-Propylsulfamic Acid as a Recyclable and Efficient Nanocatalyst for the Synthesis of 2H-indazolo[2,1-b]phthalazine-triones in Solvent-Free Conditions: Comparison with Sulfamic Acid

  • Rostami, Amin (Department of Chemistry, Faculty of Science, University of Kurdistan) ;
  • Tahmasbi, Bahman (Department of Chemistry, Faculty of Science, University of Kurdistan) ;
  • Yari, Ako (Department of Chemistry, Faculty of Science, University of Kurdistan)
  • Received : 2013.01.20
  • Accepted : 2013.02.22
  • Published : 2013.05.20


N-Propylsulfamic acid supported onto magnetic $Fe_3O_4$ nanoparticles (MNPs-PSA) was used as an efficient and magnetically recoverable catalyst for synthesis of 2H-Indazolo[2,1-b]phthalazine-1,6,11(13H)-trione derivatives from the three-component, one-pot condensation reaction of phthalhydrazide, aromatic aldehydes and cyclic 1,3-diones, in good to excellent yields at $100^{\circ}C$ under solvent-free conditions. The catalyst was easily separated with the assistance of an external magnetic field from the reaction mixture and reused for several consecutive runs without significant loss of its catalytic efficiency. In order to compare, the synthesis of 2H-Indazolo[ 2,1-b]phthalazine-1,6,11(13H)-trione derivatives in the presence of catalytic amount of sulfamic acid (SA) under same reaction condition was also reported.


  1. Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University: Oxford, 1998.
  2. Cole-Hamilton, D. J. Science 2003, 299, 1702.
  3. White, R. J.; Luque, R.; Budarin, V.; Clark, J. H.; Macquarrie, D. J. Chem. Soc. Rev. 2009, 38, 481.
  4. Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R. N. Chem. Rev. 2008, 108, 2064.
  5. Yavuz, C. T.; Mayo, J. T.; Yu, W. W.; Prakash, A.; Falkner, J. C.; Yean, S.; Cong, L. L. H.; Shipley, J.; Kan, A.; Tomson, M.; Natelson, D.; Colvin, V. L. Science 2006, 314, 964.
  6. Hu, A.; Yee, G. T.; Lin, W. J. Am. Chem. Soc. 2005, 127, 12486.
  7. Alexander, K. T. S.; Robin, L. G. Chem. Eur. J. 2010, 16, 12718.
  8. Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J. M. Chem. Rev. 2011, 111, 3036.
  9. Karimi, B.; Farhangi, E. Chem. Eur. J. 2011, 17, 6056.
  10. Hudson, R.; Rivière, A.; Cirtiu, C. M.; Luska, K. L.; Moores, A. Chem. Commun. 2012, 48, 3360.
  11. Heravi, M. M.; Baghernejad, B. H.; Oskooie, A. Curr. Org. Chem. 2009, 13, 1002. (References therein).
  12. Heravi, M. M.; Alinejhad, H.; Bakhtiari, K.; Oskooie, H. A. Mol. Divers. 2010, 14, 621.
  13. Mavel, S.; Thery, I.; Gueiffier, A. Arch. Pharm. Med. Chem. 2002, 335, 7.<7::AID-ARDP7>3.0.CO;2-L
  14. Street, L. J.; Sternfeld, F.; Jelley, R. A.; Reeve, A. J.; Carling, R. W.; Moore, K. W.; McKernan, R. M.; Sohal, B.; Cook, S.; Pike, A.; Dawson, G. R.; Bromidge, F. A.; Wafford, K. A.; Seabrook, G. R.; Thompson, S. A.; Marshall, G.; Pillai, G. V.; Castro, J. L.; Atack, J. R.; MacLeod, A. M. J. Med. Chem. 2004, 47, 3642.
  15. Imamura, Y.; Noda, A.; Imamura, T.; Ono, Y.; Okawara, T.; Noda, H. Life Sci. 2003, 74, 29.
  16. Kim, J. S.; Lee, H. J.; Suh, M. E.; Choo, H. Y. P.; Lee, S. K.; Park, H. J.; Kim, C.; Park, S. W.; Lee, C. O. Bioorg. Med. Chem. 2004, 12, 3683.
  17. Lebsack, A. D.; Gunzner, J.; Wang, B.; Pracitto, R.; Schaffhauser, H.; Santini, A.; Aiyar, J.; Bezverkov, R.; Munoz, B.; Liu, W.; Venkatraman, S. Bioorg. Med. Chem. Lett. 2004, 14, 2463.
  18. Grasso, S.; De Sarro, G.; De Sarro, A.; Micale, N.; Zappala, M.; Puia, G.; Baraldi, M.; De Micheli, C. J. Med. Chem. 2000, 43, 2851.
  19. Nomoto, Y.; Obase, H.; Takai, H.; Teranishi, M.; Nakamura, J.; Kubo, K. Chem. Pharm. Bull. 1990, 38, 2179.
  20. Watanabe, N.; Kabasawa, Y.; Takase, Y.; Matsukura, M.; Miyazaki, K.; Ishihara, H.; Kodama, K.; Adachi, H. J. Med. Chem. 1998, 41, 3367.
  21. Sayyafi, M.; Seyyedhamzeh, M.; Khavasi, H. R.; Bazgir, A. Tetrahedron 2008, 64, 2375.
  22. Shaterian, H. R.; Ghashang, M.; Feyzi, M. Appl. Catal. A-Gen. 2008, 345, 128.
  23. Khurana, J. M.; Magoo, D. Tetrahedron Lett. 2009, 50, 7300.
  24. Shaterian, H. R.; Hosseinian, A.; Ghashang, M. ARKIVOC 2009, (ii), 59.
  25. Nagarapu, L.; Bantu, R.; Mereyala, H. B. J. Heterocycl. Chem. 2009, 46, 728.
  26. Wang, H.-J.; Zhang, X.-N.; Zhang, Z.-H. Monatsh Chem. 2010, 141, 425.
  27. Sabitha, G.; Srinivas, C.; Raghavendar, A.; Yadav, J. S. Helv. Chim. Acta 2010, 93, 1375.
  28. Fazaeli, R.; Aliyan, H.; Fazaeli, N. Open Catal. J. 2010, 3, 14.
  29. Ghorbani-Vaghei, R.; Karimi-Nami, R.; Toghraei-Semiromi, Z.; Amiri, M. Tetrahedron 2011, 67, 1930.
  30. Mosaddegh, E.; Hassankhani, A. Tetrahedron Lett. 2011, 52, 488.
  31. Rostami, A.; Ahmad-Jangi, F.; Zarehbin, M. R.; Akradi, J. Synth. Commun. 2010, 40, 1500.
  32. Jafari, H.; Rostami, A.; Ahmad-Jangi, F.; Ghorbani-Choghamarani, A. Synth. Commun. 2012, 9, 489.
  33. Kassaee, M. Z.; Masrouri, H.; Movahedi, F. Appl. Catal. A-Gen. 2011, 395, 28.

Cited by

  1. Fast-Growing Field of Magnetically Recyclable Nanocatalysts vol.114, pp.14, 2014,
  2. H-functionalized mesoporous silica materials as solid acid catalyst for facile and solvent-free synthesis of 2H-indazolo[2,1-b]phthalazine-1,6,11-trione derivatives vol.39, pp.12, 2015,
  3. Synthesis of heterocycles and fused heterocycles catalyzed by nanomaterials vol.5, pp.92, 2015,
  4. Synthesis of Pd-Complex Supported on MCM-41 and Its Catalytic Activity for the C–C Coupling Reactions vol.146, pp.6, 2016,
  5. A facile preparation of palladium Schiff base complex supported into MCM-41 mesoporous and its catalytic application in Suzuki and Heck reactions vol.23, pp.4, 2016,
  6. Schiff base complex of palladium immobilized on magnetic nanoparticles: an efficient and recyclable nanocatalyst for CC coupling reactions vol.30, pp.12, 2016,
  7. magnetic nanoparticles as catalyst for Suzuki and Heck reactions in water or poly(ethylene glycol) vol.30, pp.6, 2016,
  8. Benzylisothiourea complex of palladium on magnetic nanoparticles: A highly efficient and reusable nanocatalyst for synthesis of polyhydroquinolines and Suzuki reaction vol.31, pp.8, 2016,
  9. A new palladium complex supported on magnetic nanoparticles and applied as an catalyst in amination of aryl halides, Heck and Suzuki reactions vol.14, pp.3, 2017,
  10. -MNPs for the efficient promotion of some multi-component reactions under solvent-free conditions vol.41, pp.20, 2017,
  11. A magnetically retrievable heterogeneous copper nanocatalyst for the synthesis of 5-substituted tetrazoles and oxidation reactions vol.42, pp.8, 2017,
  12. N-Propylsulfamic acid supported onto magnetic Fe3O4 nanoparticles (MNPs-PSA) as a green and reusable heterogeneous nanocatalyst for the chemoselective preparation and deprotection of acylals vol.43, pp.11, 2017,
  13. Synthesis of Heterocycles Catalyzed by Iron Oxide Nanoparticles vol.94, pp.4, 2017,
  14. Synthesis and characterization of Cu(II)-Adenine-MCM-41 as stable and efficient mesoporous catalyst for the synthesis of 5-substituted 1H-tetrazoles and 1H-indazolo [1,2-b]phthalazine-triones vol.25, pp.6, 2018,
  15. H-catalysed selective oxidation of sulfides to sulfones pp.02682605, 2018,
  16. Sulfamic acid functionalized 3D-network nanoporous polymer based on calix[4]resorcinarene: a recyclable heterogeneous nanocatalyst for the efficient synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes under thermal neat conditions vol.91, pp.1-2, 2018,