Measuring PEG Retentions and EMCs of PEG Impregnated Softwood Specimens after Heat-treatment

PEG 주입 침엽수 시편의 열처리 후 PEG 잔류량과 평형함수율 측정

  • Hong, Seung-Hyun (Dept. of Bio-based Materials, Chungnam National University) ;
  • Kim, Chung-Ho (Dept. of Formative Design, Kongju National University) ;
  • Lim, Ho-Mook (Dept. of Bio-based Materials, Chungnam National University) ;
  • Kang, Ho-Yang (Dept. of Bio-based Materials, Chungnam National University)
  • 홍승현 (충남대학교 환경소재공학과) ;
  • 김정호 (공주대학교 조형디자인학부) ;
  • 임호묵 (충남대학교 환경소재공학과) ;
  • 강호양 (충남대학교 환경소재공학과)
  • Received : 2012.08.08
  • Accepted : 2013.03.18
  • Published : 2013.05.25


This study was carried to provide basic data for the research of the effect of PEG impregnation on preventing wood from cracking during heat treatment. Three popular softwood species were selected for investigating the PEG penetration rate and retention depending on PEG molecular weight, PEG retention after heat treatment and their EMCs. The average retentions of PEG400 were reversely proportional to the basic densities of three species and those of the other PEGs showed similar behaviour as well. It is obvious that PEG retention decreased as PEG molecular weight increased with a species. PEG impregnation increased or decreased the moisture contents of the specimens within 2%, and increased their basic densities by 16.8% as a maximum. The Weight Percentage Losses of PEG400 during heat treatment were the largest among three PEG levels, which implied that lower molecular weight PEG leached more than the highers. There was less difference in EMC between PEG impregnated and control specimens at low RH, but their difference increased at high RH.

PEG 주입을 통해 열처리 중 목재의 균열을 방지하기 위한 연구에 필요한 기초자료를 제공하기 위해 본 연구가 수행되었다. 국내에서 사용되는 대표적인 침엽수 세 수종의 소시편을 이용하여 PEG 분자량에 따른 침투 속도와 잔류량, 열처리 후 잔류량, 평형함수율 등을 조사하였다. PEG400의 평균 잔류량은 수종별 기본밀도에 반비례하였으며 다른 분자량 PEG에서도 비슷한 경향을 나타냈다. 한 수종 내에서는 PEG 분자량이 클수록 잔류 PEG 양이 감소하는 경향이 뚜렷하다. PEG 주입에 의해 함수율이 2% 내에서 증가하거나 감소하였으며, 시편의 평균 기본밀도는 최고 16.8%까지 증가하였다. 열처리에 의한 중량감소율은 PEG400 시편이 PEG600, PEG1000 보다 컸다. 낮은 분자량의 PEG가 더 많이 용출되었다고 볼 수 있다. 평형함수율은 상대습도가 낮을 때(32%RH) 세 수종 모두 PEG 주입 시편과 무처리 시편의 차이가 없었으나, 상대습도가 증가할수록 PEG 주입 시편이 무처리 시편보다 높게 나타났다.



Supported by : 한국연구재단


  1. Alma, M .H., H. Hafizoglu and D. Maldas. 1996. Dimensional stability of several wood species treated with vinyl monimers and polyethylene glycol-1000. International Journal of Polymer Material 32: 93-99.
  2. Borrega, Marc and P. Karenlampi. 2010. Hygroscopicity of heat-treated Norway spruce (Picea abies) wood. Holz als Roh-und Werkstoff 68(2): 233-235.
  3. Jeremic, Dragica and Paul Cooper. 2009. PEG quantification and examination of molecular weight distribution in wood cell walls. Wood Science and Technology 43(3-4): 317-329.
  4. Bjurhager, Ingela, Jonas Ljungdahl and Lennart Wallstro. 2010. Towards improved understanding of PEG-impregnated waterlogged archaeological wood: A model study on recent oak. Holzforschung 64(2): 243-250.
  5. Kang, H. Y. 2009. Improving the Dimensional Stability of Spruce and Birch Boards by Heat-Treatment at 190 and $210^{\circ}C$. Journal of Korea Furniture Society 20(6): 560-565.
  6. Korkut, Suleyman, S. Karayilmazlar, S. Hiziroglu, T. Sanli. 2010. Some of the Properties of Heat- Treated Sessile Oak (Quercus petraea). Forest Products Journal 60(5): 473-480.
  7. Loughborough, W. K. 1948. Chemical seasoning: Its effectiveness and present status. U.S. Forest services Forest Products Laboratory Report, D1721.
  8. Mackay, J. F. G. 1972. The cnnurrence, development and control of checking in Tasmanian Eucalyptus obliqua. Holzforshung 26(4): 121-124.
  9. Michell, H. L. and H. E. Wahlgren. 1959. New chemical treatment curbs shrink and swell of walnut gunstocks. Forest Products Journal 9(12): 437-441.
  10. Mitchell, H. L. and E. S. Iversen. 1961. Seasoning green-wood carvings with polyethyleneglycol-1000. Forest Products Journal 1: 6-7.
  11. Poncsak, S., D. Kocaefe and R. Younsi. 2011. Improvement of the heat treatment of Jack pine (Pinus banksiana) using ThermoWood technology. Holz als Roh-und Werkstoff 69(2): 281-286.
  12. Ralph, J and S. J. Edwards. 2004. PEG penetration in three commercially important Tsmanian Eucalypts. Wood and Fiber Science 36(4): 611-619.
  13. Ralph, J. 2006. PEG penetration and the effects of PEG pretreatment in air-dried Eucalyptus regnans. Wood and Fiber Science 38(1): 139-143.
  14. Stamm, A. J. 1959. Effect of polyethylene glycol on the dimensional stabilization of wood. Forest Products Journal 9(10): 375-381.
  15. Wallstrom, L. and K. A. H. Lindberg 1995. Wood surface stabilization with polyethyleneglycol, PEG. Wood Science and Technology 29: 109-120.
  16. Yamaguchi, T., Y. Ishimaru and H. Urakami. 1999. Effect of temperature on dimensional stability of wood with polyethylene glycol II: Temperature dependence of PEG adsorption and mechanical properties of treated wood. Mokuzai Gakkaishi 45(6): 441-447.
  17. Yilgor, Nural and Nami S. Kartal. 2010. Heat Modification of Wood: Chemical Properties and Resistance to Mold and Decay Fungi. Forest Products Journal 60(4): 357-361.

Cited by

  1. Effects of Drying Temperature and Acetylation on The Retention of Polyethylene Glycol in Red Pine Wood Disks vol.43, pp.6, 2015,