Effects of Nitrogen Defect on Magnetism of Cu-doped InN: First-principles Calculations

  • Kang, Byung-Sub (Department of Nano Science and Mechanical Engineering, Konkuk University) ;
  • Chae, Kwang-Pyo (Department of Nano Science and Mechanical Engineering, Konkuk University) ;
  • Lee, Haeng-Ki (Department of Radiotechnology, Suseong College)
  • Received : 2013.01.02
  • Accepted : 2013.05.01
  • Published : 2013.06.30


We investigate the electronic and magnetic properties in Cu-doped InN with the N vacancy ($V_N$) from first principles calculations. There is the long-range ferromagnetic order between two Cu atoms, attributed to the hole-mediated double exchange through the strong p-d interaction between the Cu atom and neighboring N atom. The system of $V_N$ defect in Cu-doped InN has the lowest formation energy. Due to the hybridization between the Cu-3d and $V_N$ states, the spin-polarization on the Cu atoms in the InN lattice is reduced by $V_N$ defect. So, it shows a weak ferromagnetic behavior.


Cu-doped InN;first-principles;nitrogen defect;ferromagnetism


Supported by : Konkuk University


  1. P. P. Chen, H. Makino, and T. Yao, J. Cryst. Growth 269, 66 (2004).
  2. V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Status Solidi, B Basic Res. 229, R1 (2002).<R1::AID-PSSB99991>3.0.CO;2-O
  3. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
  4. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002).
  5. K. Xu and A. Yoshikawa, Appl. Phys. Lett. 83, 251 (2003).
  6. S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, Appl. Phys. Lett. 84, 3765 (2004).
  7. T. L. Tansley and C. P. Foley, J. Appl. Phys. 59, 3241 (1986).
  8. Q. Guo, Q. Kato, M. Fujisawa, and A. Yoshida, Solid State Commun. 83, 721 (1992).
  9. M. G. Ganchenkova and R. M. Nieminen, Phys. Rev. Lett. 96, 196402 (2006).
  10. Yanlu Li, Weiliu Fan, Honggang Sun, Xiufeng Cheng, Pan Li, Xian Zhao, and Minhua Jiang, J. Solid State Chem. 183, 2662 (2010).
  11. S. Yu Savrasov, Phys. Rev. B 54, 16470 (1996).
  12. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  13. J. F. Janak, V. L. Moruzzi, and A. R. Williams, Phys. Rev. B 12, 1257 (1975).
  14. Claudia Bungaro, Krzysztof Rapcewicz, and J. Bernholc, Phys. Rev. B 61, 6720 (2000).
  15. Agostino Zoroddu, Fabio Bernardini, and Paolo Ruggerone, Phys. Rev. B64, 045208-1 (2001).
  16. L. H. Ye, A. J. Freeman, and B. Delley, Phys. Rev. B 73, 033203 (2006).
  17. R. Q. Wu, G. W. Peng, L. Liu, Y. P. Feng, Z. G. Huang, and Q. Y. Wu, Appl. Phys. Lett. 89, 062505 (2006).
  18. ByungSub Kang, HaengKi Lee, KyeongSup Kim, and HeeJae Kang, Phys. Scr. 79, 025701 (2009).
  19. T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63, 195205 (2001).
  20. C. Stampfl, C. G. Van de Walle, Phys. Rev. B 59, 5521 (1999).
  21. Masahiko Hashimoto, Yi-Kai Zhou, Masahito Kanamura, and Hajime Asahi, Solid State Commun. 122, 37 (2002).
  22. P. P. Chen, H. Makino, J. J. Kim, and T. Yao, J. Cryst. Growth 251, 331 (2003).