DOI QR코드

DOI QR Code

General Analytical Method for Magnetic Field Analysis of Halbach Magnet Arrays Based on Magnetic Scalar Potential

  • Jin, Ping (Department of Energy and Electrical Engineering, Hohai University) ;
  • Yuan, Yue (Department of Energy and Electrical Engineering, Hohai University) ;
  • Lin, Heyun (Servo Control Engineering Center of Education Ministry, Southeast University) ;
  • Fang, Shuhua (Servo Control Engineering Center of Education Ministry, Southeast University) ;
  • Ho, S.L. (Department of Electrical Engineering, Hong Kong Polytechnic University)
  • Received : 2012.09.07
  • Accepted : 2013.05.27
  • Published : 2013.06.30

Abstract

This paper presents a general analytical method for predicting the magnetic fields of different Halbach magnet arrays with or without back iron mounted on slotless permanent magnet (PM) linear machines. By using Fourier decomposition, the magnetization components of four typical Halbach magnet arrays are determined. By applying special synthetic boundary conditions on the PM surfaces, the expressions of their magnetic field distributions are derived based on the magnetic scalar potential (MSP), which are simpler than those based on the magnetic vector potential (MVP). The correctness of the method is validated by finite element analysis. The harmonics of airgap flux density waveforms of these Halbach magnet arrays with or without back iron are also compared and optimized.

Keywords

halbach magnet array;magnetic scalar potential;synthetic boundary condition;harmonic analysis

References

  1. K. Halbach, Nucl. Instrum. Meth. 169, 1 (1980). https://doi.org/10.1016/0029-554X(80)90094-4
  2. Z. Q. Zhu, in Proc. Power Conversion Conf. Nagoya, Japan, K9 (2007).
  3. K. Atallah and D. Howe, IEEE Trans. Magn. 34, 2060 (1998). https://doi.org/10.1109/20.706795
  4. T. Mizuno and H. Yamada, IEEE Trans. Magn. 28, 3027 (1992). https://doi.org/10.1109/20.179706
  5. R. E. Clark, D. S. Smith, P. H. Mellor, and D. Howe, IEEE Trans. Magn. 31, 3746 (1995). https://doi.org/10.1109/20.489758
  6. T. Mizuno and H. Yamada, EEE Trans. Magn. 28, 3027 (1992). https://doi.org/10.1109/20.179706
  7. K. F. Rasmussen, H. D. John, T. J. E. Miller, M. I. McGilp, and O. Mircea, IEEE Trans. Magn. 36, 1547 (2000).
  8. Z. Q. Zhu, Z. P. Xia, and D. Howe, IEEE Trans. Magn. 38, 2997 (2002). https://doi.org/10.1109/TMAG.2002.803190
  9. N. Boules, IEEE Trans. Ind. Appl. 20, 1267 (1984).
  10. N. Boules, IEEE Trans. Ind. Appl. 26, 786 (1990). https://doi.org/10.1109/28.56006
  11. Z. Q. Zhu, D. Howe, E. Bolte, and B. Ackermann, IEEE Trans. Magn. 29, 124 (1993). https://doi.org/10.1109/20.195557
  12. Z. Q. Zhu, David Howe, and C. C. Chan, IEEE Trans. Magn. 38, 229 (2002). https://doi.org/10.1109/20.990112
  13. H. Wijono, H. Arof, and W. Ping, IET Electr. Power Appl. 4, 629 (2010). https://doi.org/10.1049/iet-epa.2009.0267
  14. D. L. Trumper, W. J. Kim, and M. E. Williams, IEEE Trans. Ind. Appl. 32, 371 (1996). https://doi.org/10.1109/28.491486
  15. M. G. Lee, S. Q. Lee, and D. G. Gweon, Mechatronics 14, 115 (2004). https://doi.org/10.1016/S0957-4158(03)00015-1
  16. J. B. Wang and D. Howe, IEEE Trans. Magn. 41, 2470 (2005). https://doi.org/10.1109/TMAG.2005.854328
  17. J. B. Wang, D. Howe, and G. W. Jewell, IEEE Trans. Magn. 39, 3507 (2003). https://doi.org/10.1109/TMAG.2003.819463
  18. P. D. Pfister and Y. Perriard, IEEE Trans. Magn. 47, 1739 (2011). https://doi.org/10.1109/TMAG.2011.2113396
  19. X. H. Wang, Q. F. Li, and S. H. Wang, IEEE Trans. Magn. 18, 424 (2003).
  20. R. P. Praveen, M. H. Ravichandran, V. T. S. Achari, V. P. J. Raj, G. Madhu, and G. R. Bindu, International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTICON), 19, 254 (2010).
  21. A. B. Proca, A. Keyhani, A. El-Antably, W. Z. Lu, and M. Dai, IEEE Trans. Energy Conver. 18, 386 (2003). https://doi.org/10.1109/TEC.2003.815829
  22. Joon Hyuk Park, Jong Hyun Choi, Dong Ho Kim, and Yoon Su Baek, IEEE Trans. Magn. 40, 3069 (2004). https://doi.org/10.1109/TMAG.2004.829262
  23. Seok-Myeong Jang, Min-Mo Koo, Yu-Seop Park, Jang-Young Choi, and Sung-Ho Lee, IEEE Trans. Magn. 47, 3665 (2011). https://doi.org/10.1109/TMAG.2011.2153187
  24. B. Ackermann and R. Sottek, Archiv fuer Elektrotechnik (Berlin) 78, 117 (1992).
  25. Z. Q. Zhu and D. Howe, IEEE Trans. Magn. 29, 143 (1993). https://doi.org/10.1109/20.195559
  26. D. C. Hanselman, New York: McGraw-Hill, Inc., 1994.

Cited by

  1. Optimum Design for Slot-type of Stator Based on PM Motor with Halbach Structure vol.22, pp.2261-236X, 2015, https://doi.org/10.1051/matecconf/20152202032