Estimation of Output Voltage and Magnetic Flux Density for a Wireless Charging System with Different Magnetic Core Properties

  • Park, Ji Hea (Clean Energy Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Sang Woo (Clean Energy Research Center, Korea Institute of Science and Technology (KIST))
  • Received : 2012.11.22
  • Accepted : 2013.04.01
  • Published : 2013.06.30


The design model and key parameters of the material design for the control of induced magnetic flux at the near-field and efficient power transfer in a modified wireless power transfer (WPT) system with a large air gap of wireless electric vehicles were investigated through analytical simulations for magnetic vector and time-domain transient analysis. Higher saturation magnetic core with low core loss induced a stronger vertical magnetic field by the W-type primary coil in the WPT system with a gap of 20 cm at 20 kHz, which is shown from the vector potentials of the magnetic induction. The transient analysis shows that the higher magnetic fluxes through the pick-up cores lead to a linear increment of the alternating voltage with a sinusoidal waveform in the non-contact energy transfer system.


wireless power transfer;online electric vehicle (OLEV);electromagnetic field (EMF);magnetic core;output voltage;maxwell simulation


  1. X. Zhang, S. H. Yang, and H. Knickle, J. Power Sources 128, 331 (2004).
  2. F. Sun, X. Hu, Y. Zou, and S. Li, Energy 36, 3531 (2011).
  3. F. A. Fleming, P. Shumard, and B. Dickinson, J. Power Sources 78, 237 (1999).
  4. G. A. Covic, J. T. Boys, and H. G. Lu, 1st IEEE Conference on Industrial Electronics and Applications, May, 1 (2006).
  5. J. L. Villa, J. Sallan, A. Llombart, and J. F. Sanz, Applied Energy 86, 355 (2009).
  6. M. Jufer, N. Macabrey, and M. Perrottet, Mathematics and Computers in Simulation 46, 197 (1998).
  7. S. Satoshi and S. Takahide, European patent EP 2 333 932 A1 (2011).
  8. C. S. Wang, O. H. Stielau, and G. A. Covic, IEEE Transactions on Industrial Electronics 52, 1308 (2005).
  9. G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, PowerCon 2000 International Conference on Power System Technology 3, 79 (2000).
  10. K. H. Kim, D. W. Hwang, H. S. Park, K. I. Woo, and Y. H. Cho, J. Magn. Magn. Mater. 272-276, 695 (2004).
  11. W. Chandrasena, P. G. McLaren, U. D. Annakkage, R. P. Jayasinghe, D. Muthumuni, and E. Dirks, Electric Power Systems Res. 76, 634 (2006).
  12. R. A. Salas and J. Pleite, J. Appl. Phys. 107, 09A517 (2010).
  13. F. de Leon and A. Semlyen, IEEE Trans. Power Delivery 10, 315 (1995).
  14. C. S. Jeong, T. I. Sung, K. H. Lee, S. G. Hong, and I. H. Park, International Conference on Electrical Machines and Systems (ICEMS), 1 (2011).
  15. O. H. Stielau and G. A. Covic, PowerCon 2000 International Conference on Power System Technology 3, 85 (2000).
  16. Y. Matsuda, H. Sakamoto, H. Shibuya, and S. Murata, J. Appl. Phys. 99, 08R902 (2006).
  17. J. Huh, S. W. Lee, W. Y. Lee, G. H. Cho, and C. T. Rim, IEEE Transactions on Power Electronics 26, 3666 (2011).
  18. S. Y. Ahn, H. J. Lee, J. G. Byun, D. S. Kang, T. Song, Y. B. Chun, J. H. Yim, D. H. Cho, and J. H. Kim, 32nd Annual Meeting The Bioelectromagnetics Society (BEMS), 2010.
  19. S. W. Lee, J. Hur, C. B. Park, N. S. Choi, G. H. Cho, and C. T. Rim, Energy Conversion Congress and Exposition(ECCE), 2010 IEEE 1598 (2010).
  20. S. Ahn, J. Y. Lee, D. H. Cho, and J. Kim, CIRP Design Conference 233 (2011).
  21. K. Venkatachalam, C. R. Sullivan, T. Abdallah, and H. Tacca, Accurate Prediction of Ferrite Core Loss with Nonsinusoidal Waveforms Using Only Steinmetz Parameters 8th IEEE Workshop on Computers in Power Electronics, June, 1 (2002).

Cited by

  1. Examination of Efficiency Based on Air Gap and Characteristic Impedance Variations for Magnetic Resonance Coupling Wireless Energy Transfer vol.20, pp.1, 2015,
  2. Studies on the different assembles of magnetic shielding pieces in electromagnetic induction-type wireless charging system vol.125, pp.2, 2019,