DOI QR코드

DOI QR Code

Development of High-Field ESR System Using SQUID Magnetometer and its Application to Measurement under High Pressure

  • Sakurai, T. (Center for Supports to Research and Education Activities, Kobe University) ;
  • Fujimoto, K. (Graduate School of Science, Kobe University) ;
  • Okubo, S. (Molecular Photoscience Research Center, Kobe University) ;
  • Ohta, H. (Molecular Photoscience Research Center, Kobe University) ;
  • Uwatoko, Y. (Institute for Solid State Physics, University of Tokyo)
  • Received : 2012.05.31
  • Accepted : 2012.07.24
  • Published : 2013.06.30

Abstract

We have developed a high-field and high-frequency ESR system using a commercially available magnetometer equipped with the superconducting quantum interference device (SQUID). This is magnetization detection type ESR and ESR is observed as a change of the magnetization at the resonance condition under irradiation of the electromagnetic wave. The frequency range is from 70 to 315 GHz and the maximum magnetic field is 5 T. The sensitivity is estimated to be $10^{13}$ spins/G. The advantage of this system is that the high-field ESR measurements can be made very easily and quantitatively. Moreover, this high-field ESR can be applied to the measurements under pressure by using a widely used piston-cylinder pressure cell.

Keywords

ESR;high field;magnetization detection;SQUID;pressure cell

References

  1. I. P. Kaminow and R. V. Jones, Phys. Rev. 123, 1122 (1961). https://doi.org/10.1103/PhysRev.123.1122
  2. J. Stankowski, A. Galezewski, M. Krupski, S. Waplak, and H. Gierszal, Rev. Sci. Instrum. 47, 128 (1976). https://doi.org/10.1063/1.1134459
  3. J. D. Barnett, S. D. Tyagi, and H. M. Nelson, Rev. Sci. Instrum. 49, 348 (1978). https://doi.org/10.1063/1.1135405
  4. M. Krupski, Rev. Sci. Instrum. 67, 2894 (1996). https://doi.org/10.1063/1.1147123
  5. N. Sakai and J. H. Pifer, Rev. Sci. Instrum. 56, 726 (1985). https://doi.org/10.1063/1.1138215
  6. S. E. Bromberg and I. Y. Chan, Rev. Sci. Instrum. 63, 3670 (1992). https://doi.org/10.1063/1.1143596
  7. S. Garaj, T. Kambe, L. Forro, A. Sienkiewicz, M. Fujiwara, and K. Oshima, Phys. Rev. B 68, 144430-1-7 (2003). https://doi.org/10.1103/PhysRevB.68.144430
  8. A. Sienkiewicz, B. Vileno, S. Garaj, M. Jaworski, and L. Forro, J. Magn. Reson. 177, 261 (2005). https://doi.org/10.1016/j.jmr.2005.08.002
  9. S. Haravifard, A. Banerjee, J. C. Lang, G. Srajer, D. M. Silevitch, B. D. Gaulin, H. A. Dabkowska, and T. F. Rosenbaum, Proc. Natl. Acad. Sci. 109, 2286 (2012). https://doi.org/10.1073/pnas.1114464109
  10. T. Sakurai, A. Taketani, S. Kimura, M. Yoshida, S. Okubo, H. Ohta, H. Tanaka, and Y. Uwatoko, AIP Conf. Proc. 850, 1057 (2006).
  11. T. Sakurai, M. Tomoo, S. Okubo, H. Ohta, K. Kudo, and Y. Koike, J. Phys.: Conf. Ser. 150, 042171-1-4 (2009). https://doi.org/10.1088/1742-6596/150/4/042171
  12. T. Sakurai, T. Horie, M. Tomoo, K. Kondo, N. Matsumi, S. Okubo, H. Ohta, Y. Uwatoko, K. Kudo, Y. Koike, and H. Tanaka, J. Phys.: Conf. Ser. 215, 012184-1-4 (2010).
  13. Y. Uwatoko, T. Hotta, E. Matsuoka, H. Mori, T. Ohki, J. L. Sarrao, J. D. Thompson, N. Mori, G. Oomi, Rev. High Pressure Sci. Technol. 7, 1508 (1998). https://doi.org/10.4131/jshpreview.7.1508
  14. T. Sakurai, A. Taketani, T. Tomita, S. Okubo, H. Ohta, and Y. Uwatoko, Rev. Sci. Instrum. 78, 065107-1-6 (2007). https://doi.org/10.1063/1.2746818
  15. T. Sakurai, K. Fujimoto, R. Goto, S. Okubo, H. Ohta, and Y. Uwatoko, J. Magn. Reson. 223, 41 (2012). https://doi.org/10.1016/j.jmr.2012.07.020
  16. M. Motokawa, H. Ohta, and N. Maki, Int. J. Infrared & Millimeter Waves 12, 149 (1991). https://doi.org/10.1007/BF01009889
  17. S. S. Eaton and G. R. Eaton, in C. P. Poole Jr. and H. A. Farach Eds., Handbook of electron spin resonance, vol. 2, Springer, New York (1999).
  18. A. K. Hassan, L. A. Pardi, J. Krzystek, A. Sienkiewicz, P. Goy, M. Rohrer, and L.-C. Brunel, J. Magn. Reson. 142, 300 (2000). https://doi.org/10.1006/jmre.1999.1952
  19. L. C. Brunel, A. Caneschi, A. Dei, D. Frishelli, D. Gatteschi, A. K. Hassan, L. Lenci, M. Martinelli, C. A. Massa, L. A. Pardi, F. Popescu, I. Ricci, and L. Sorace, Res. Chem. Intermed. 28, 215 (2002). https://doi.org/10.1163/156856702320267127
  20. H. Ohta, H. Nojiri, and M. Motokawa Edts. Application of Submillimeter Wave Electron Spin Resonance for Novel Magnetic Systems, J. Phys. Soc. Jpn. 72 Suppl. B (2003).
  21. S. A. Zvyagin, M. Ozerov, E. Cizmar, D. Kamenskyi, S. Zherlitsyn, T. Herrmannsdorfer, J. Wosnitza, R. Wunsch and W. Seidel Rev. Sci. Instrum. 80, 073102-1-7 (2009). https://doi.org/10.1063/1.3155509
  22. E. J. Reijerse, Appl. Magn. Reson. 37, 795 (2010). https://doi.org/10.1007/s00723-009-0070-y
  23. B. Cage and S. Russek, Rev. Sci. Instrum. 75, 4401 (2004). https://doi.org/10.1063/1.1808893
  24. T. Sakurai, R. Goto, N. Takahashi, S. Okubo, and H. Ohta, J. Phys.: Conf. Ser. 334, 012058-1-4 (2011). https://doi.org/10.1088/1742-6596/334/1/012058
  25. W. M. Walsh, Jr. and N. Bloembergan, Phys. Rev. 107, 904 (1957). https://doi.org/10.1103/PhysRev.107.904

Cited by

  1. vol.119, pp.43, 2015, https://doi.org/10.1021/acs.jpcb.5b03664
  2. Electron paramagnetic resonance spectroscopy using a direct current-SQUID magnetometer directly coupled to an electron spin ensemble vol.108, pp.5, 2016, https://doi.org/10.1063/1.4940978