DOI QR코드

DOI QR Code

An Analytical Comparison in Electoencephalography and Electrocardiography under Pulsed Magnetic Field and Acupuncture Stimulus on Acupoint PC9

  • Lee, Hyun Sook (Department of Oriental Biomedical Engineering, Sangji University) ;
  • Hwang, Do Guwn (Department of Oriental Biomedical Engineering, Sangji University) ;
  • Cha, Yun-Yeop (Department of Oriental Rehabilitation Medicine, Sangji University)
  • Received : 2012.06.01
  • Accepted : 2012.11.11
  • Published : 2013.06.30

Abstract

We have investigated the changes of electroencephalography (EEG) and electrocardiography (ECG) under pulsed magnetic field (PMF) and acupuncture stimulus on acupoint PC9. In order to compare quantitatively the effect of PMF and acupuncture stimulus, the difference of alpha activities are calculated from EEG spectra, and the spectrum curves of ECG were analyzed in the frequency domain of heart rate variability (HRV). The increase of alpha activities after both stimuli could be explained that the impulse of stimulus on PC9 might pass through sensory nerve following meridian and approach the cerebral cortex, causing the central nervous system (CNS) to be activated for pacifying emotion and calming the mind. The decrease in sympathovagal activity of HRV after both stimuli indicates that parasympathetic nerves were activated and the sympathetic nerves were in constrained condition. These findings suggest that PMF could be patient-friendly alternative non-invasive medical treatment for influencing human physiology, in comparison with acupuncture inserting the needle and inducing nervous and anxious state to subject.

Keywords

pulsed magnetic field stimulus;acupuncture;electroencephalogram;alpha activity;heart rate variability;autonomic nervous system

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. N. M. Shupak, F. S. Prato, and A. W. Thomas, Neurosci. Lett. 363, 157 (2004). https://doi.org/10.1016/j.neulet.2004.03.069
  2. M. Ieran, S. Zaffuto, M. Bagnacani, M. Annovi, A. Moratti, and R. Cadossi, J. Orthop. Res. 8, 276 (1990). https://doi.org/10.1002/jor.1100080217
  3. E. Riva Sanseverino, A. Vannini, and P. Castellacci, Panminerva Med. 34, 187 (1992).
  4. T. L. Richards, M. S. Lappin, J. Acosta-Urquidi, G. H. Kraft, A. C. Heide, F. W. Lawrie, T. E. Merrill, G. B. Melton, and C. A. Cunningham, J. Altern. Complement Med. 3, 21 (1997). https://doi.org/10.1089/acm.1997.3.21
  5. H. S. Lee, S. W. Kim, D. G. Hwang, IEEE Trans. on Magn. 47, 3060 (2011). https://doi.org/10.1109/TMAG.2011.2153183
  6. J. Lee, I. Go, J. Choi, T. Jang, S. H. Shin, H. S. Lee, D. G. Hwang, and S. Kim, J. Magnetics 15, 209 (2010). https://doi.org/10.4283/JMAG.2010.15.4.209
  7. K. Toma, R. Conatser, R. Gilders, and F. Hagerman, J. Strength & Condit. Res. 12, 253 (1998).
  8. R. Melzack and P. D. Wall, Science 150, 971 (1965). https://doi.org/10.1126/science.150.3699.971
  9. K.Sakatani, T. Kitagawa, N. Aoyama, and M. Sasaki, Adv. Exp. Med. Biol. 662, 455 (2010). https://doi.org/10.1007/978-1-4419-1241-1_65
  10. J. Lee, D. G. Hwang, J. S. Yoo, and H. S. Lee, J. Magnetics 17, 133 (2012). https://doi.org/10.4283/JMAG.2012.17.2.133