Effect of Membrane Degradation on the Electrode Degradation in PEMFC

PEMFC에서 막 열화가 전극 열화에 미치는 영향

  • Song, Jinhoon (Department of Chemical Engineering, Sunchon National University) ;
  • Jeong, Jaejin (Department of Chemical Engineering, Sunchon National University) ;
  • Jeong, Jaehyeun (Department of Chemical Engineering, Sunchon National University) ;
  • Kim, Saehoon (HMC Eco Technology Research Institute) ;
  • Ahn, Byungki (HMC Eco Technology Research Institute) ;
  • Ko, Jaijoon (HMC Eco Technology Research Institute) ;
  • Park, Kwonpil (Department of Chemical Engineering, Sunchon National University)
  • Received : 2013.02.25
  • Accepted : 2013.03.28
  • Published : 2013.06.01


The membrane and electrode were degraded coincidentally at real PEMFC(Proton Exchange Membrane Fuel Cells) operation condition. But the interaction membrane degradation between electrode degradation has not been studied. The effect of membrane degradation on electrode degradation was studied in this work. We compared electrode degradation after membrane degradation and electrode degradation without membrane degradation. I-V performance, hydrogen crossover current, impedance and TEM were measured after and before degradation of MEA. Membrane degradation enhanced hydrogen crossover, and then Pt particle growth rate was reduced. Increase of hydrogen crossover by membrane degradation reduced the electrode degradation rate.


Supported by : 지식경제부


  1. Williams, M. C., Strakey, J. P. and Surdoval, W. A., "The U. S. Department of Energy, Office of Fossil Energy Stationary Fuel cell Program, " J. Power Sources, 143(1-2), 191-196(2005).
  2. Perry, M. L. and Fuller, T. F., "A Historical Perspective of Fuel Cell Technology in the 20th Century, " J. Electrochem. Soc, 149(7), S59-S67(2002).
  3. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger, A. Lamm(Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  4. Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S. "Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc. 140, 2872-2877(1993).
  5. Knights, S. D., Colbow, K. M., St-Pierre, J. and Wilkinson, D. P., "Aging Mechanism and lifetime of PEFC and DMFC," J. Power Sources, 127, 127-134(2004).
  6. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydrog. Energy, 31, 1838-1854(2006).
  7. Pozio, A., Silva R. F., Francesco, M. D. and Giorgi, L., "Nafion Degradation in PEFCs from End Plate Iron Contamination," Electrochim. Acta, 48, 1543-1548(2003).
  8. Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., "Durability of PEFCs at High Humidity Conditions," J. Electrochem. Soc., 152, A104-A113(2005).
  9. Curtin, D. E., Lousenberg, R. D., Henry, T. J., Tangeman, P. C. and Tisack, M. E., "Advanced Materials of Improved PEMFC Performance and Life," J. Power Sources, 131, 41-48(2004).
  10. Watanabe, M., Tsurumi, K., Mizukami,T., Nakamura, T. and Stonehart, P., "Activity and Stability of Ordered and Disordered Co-Pt Alloys for Phosphoric Acid Fuel Cells," J. Electrochem. Soc. 141, 2659-2668(1994).
  11. Akita, T., Taniguchi, A., Maekawa, J., Siroma, Z., Tanaka, K., Kohyama, M. and Yasuda, K., "Analytical TEM Study of Pt Particle Deposition in the Proton-exchange Membrane of a Membrane-electrode-assembly," J. Power Sources, 159, 461-467(2006).
  12. Zhai, Y., Zhang, H., Xing, D. and Shao, Z., "The stability of Pt/C Catalyst in $H_{3}PO_{4}/PBI$ PEMFC During High Temperature Life Test," J. Power Sources, 164, 126-133(2006).
  13. Curtin, D., Lousenberg, R., Henry, T., Tangeman, P. and Tisack, M., "Advanced Materials for Improved PEMFC Performance and Life," J. Power Sources, 131, 41-48(2004).
  14. Guilminot, E., Corcella, A., Charlot, F., Maillard, F. and Chatenet, M., "Detection of Ptz+ ions and Pt Nanoparticles Inside the Membrane of a Used PEMFC," J. Electro. Chem. Soc., 154, B96-B105(2007).
  15. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/Dry Cycling Test " , Korean J. Chem. Eng., 28, 487-491(2011).
  16. Song, J., Kim, S., Ahn, B., Ko, J. and Park, K., "Effect of Electrode Degradation on the Membrane Degradation in PEMFC," Korean. Chem. Eng. Res.(HWAHAK KONGHAK), 51, 68-72(2013).