Effects of Ginsenoside Rg3 on Early-stage Inflammatory Response in Spinal Cord Compression of Rodents

Ginsenoside Rg3이 흰쥐 척수압박손상의 초기 염증반응에 미치는 영향

  • Jeong, Beoul ;
  • Lee, Jong-Soo
  • 정벌 ;
  • 이종수
  • Published : 2013.04.30


Objectives : In present study, we investigated the effects of ginsenoside Rg3 on early-stage inflammatory response in spinal cord compression of rodents. Methods : Spinal cord injury(SCI) was induced by a vascular clip method(30 g, 5 min) on the spinal cord of mice. Rg3 was treated orally at 1 hour prior to the SCI induction. Messenger ribonucleic acid(mRNA) expression of tumor necrosis factor-${\alpha}$(TNF-${\alpha}$), interleukin-1${\beta}$(IL-1${\beta}$), interleukin-6(IL-6) and cyclooxygenase-2(COX-2) was measured by the real-time polymerase chain reaction(RT-PCR). Microglia in the spinal cord tissue, neurophils and COX-2 in the peri-lesion and inducible nitric oxide synthase(iNOS) expression in the ventral horn of SCI induced rats were measured by immunohistochemical stain. Results : 1. Rg3 significantly reduced the mRNA expression of TNF-${\alpha}$, IL-1${\beta}$, and COX-2 in the spinal cord tissue compared with SCI group(p<0.05, p<0.01). 2. Rg3 significantly reduced the total number of activated microglia and proportion of phagocytic form in the total activated microglia compared with SCI group(p<0.05, p<0.01). 3. Rg3 significantly reduced myeloperoxidase(MPO) positive neurophil in the peri-lesion compared with SCI group(p<0.05). 4. Rg3 reduced the COX-2 expression in the tissue and motor neurons compared with SCI group. 5. Rg3 significantly reduced iNOS positive motor neurons in the ventral horn compared with SCI group(p<0.01). Conclusions : In conclusion, we demonstrated at first that treatment of ginsenoside Rg3 could reduce significantly the levels of inflammatory mediators in a spinal cord compression model of rodents. Therefore, these results suggested that ginsenoside Rg3 may be a useful antimiflamatory therapeutic candidate for SCI.


Ginsenoside Rg3;Early-stage inflammatory response;Spinal cord injury


  1. Anderberg L, Aldskogius H, Holtz A. Spinal cord injury-scientific challenges for the unknown future. Ups J Med Sci. 2007;112(3): 259-88. https://doi.org/10.3109/2000-1967-200
  2. Beattie MS, Hermann GE, Rogers RC, Bresnahan JC. Cell death in models of spinal cord injury. Prog Brain Res. 2002;137:37-47. https://doi.org/10.1016/S0079-6123(02)37006-7
  3. Springer JE, Azbill RD, Knapp PE. Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat Med. 1999;5(8):943-6. https://doi.org/10.1038/11387
  4. Skaper SD, Leon A. Monosialogangliosides, neuroprotection, and neuronal repair processes. J Neurotrauma. 1992;9(l2):507-16.
  5. Pannu R, Barbosa E, Singh AK, Singh I. Attenuation of acute inflammatory response by atorvastatin after spinal cord injury in rats. J Neurosci Res. 2005;79:340-50. https://doi.org/10.1002/jnr.20345
  6. Schnell L, Fearn S, Schwab ME, Perry VH, Anthony DC. Cytokine-induced acute inflammation in the brain and spinal cord. J Neuropathol Exp Neurol. 1999;58:245-54. https://doi.org/10.1097/00005072-199903000-00004
  7. Campbell SJ, Wilcockson DC, Butchart AG, Perry VH, Anthony DC. Altered chemokine expression in the spinal cord and brain contributes to differential interleukin-1betainduced neutrophil recruitment. J Neurochem. 2002;83:432-41. https://doi.org/10.1046/j.1471-4159.2002.01166.x
  8. Popovich PG, Wei P, Stokes BT. Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol. 1997;377:443-64. https://doi.org/10.1002/(SICI)1096-9861(19970120)377:3<443::AID-CNE10>3.0.CO;2-S
  9. Yang L, Blumbergs PC, Jones NR, Manavis J, Sarvestani GT, Ghabriel MN. Early expression and cellular localization of proinflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in human traumatic spinal cord injury. Spine. 2004;29:966-71. https://doi.org/10.1097/00007632-200405010-00004
  10. Town T, Nikolic V, Tan J. The microglial "activation" continuum: from innate to adaptive responses. J Neuroinflammation. 2005;2:24. https://doi.org/10.1186/1742-2094-2-24
  11. Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998;38:97-120. https://doi.org/10.1146/annurev.pharmtox.38.1.97
  12. Vanegas H, Schaible HG. Prostaglandins and cyclooxygenases in the spinal cord. Prog Neurobiol. 2001;64:327-63. https://doi.org/10.1016/S0301-0082(00)00063-0
  13. Hamada Y, Ikata T, Katoh S, Tsuchiya K, Niwa M, Tsutsumishita Y, Fukuzawa K. Role of nitric oxide in compression injury of rat spinal cord. Free Radic Biol Med. 1996;20:1-9. https://doi.org/10.1016/0891-5849(95)02017-9
  14. Nakahara S, Yone K, Setoguchi T, Yamaura I, Arishima Y, Yoshino S, Komiya S. Changes in nitric oxide and expression of nitric oxide synthase in spinal cord after acute traumatic injury in rats. J Neurotrauma. 2002;19:1467-74. https://doi.org/10.1089/089771502320914697
  15. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin. 2008;29(9):1109-18. https://doi.org/10.1111/j.1745-7254.2008.00869.x
  16. Bae EA, Hyun YJ, Choo MK, Oh JK, Ryu JH, Kim DH. Protective effect of fermented red ginseng on a transient focal ischemic rats. Arch Pharm Res. 2004;27(11):1136-40. https://doi.org/10.1007/BF02975119
  17. Joo SS, Yoo YM, Ahn BW, Nam Ssy, Kim YB, Hwang KW. Prevention of inflammationmediated neurotoxicity by Rg3 and its role in microglial activation. Biol Pharm Bull. 2008;31(7):1392-6. https://doi.org/10.1248/bpb.31.1392
  18. Bae EA, Kim EJ, Park JS, Kim HS, Ryu JH, Kim DH. Ginsenosides Rg3 and Rh2 inhibit the activation of AP-1 and protein kinase A pathway in lipopolysaccharide/interferongamma- stimulated BV-2 microglial cells. Planta Med. 2006;72(7):627-33. https://doi.org/10.1055/s-2006-931563
  19. Tian J, Fu F, Geng M, Jiang Y, Yang J, Jiang W, Wang C, Liu K. Neuroprotective effect of 20(S)-ginsenoside Rg3 on cerebral ischemia in rats. Neurosci Lett. 2005;374(2): 92-7. https://doi.org/10.1016/j.neulet.2004.10.030
  20. Kim S, Nah SY, Rhim H. Neuroprotective effects of ginseng saponins against L-type Ca2+ channel-mediated cell death in rat cortical neurons. Biochem Biophys Res Commun. 2008;365(3):399-405. https://doi.org/10.1016/j.bbrc.2007.10.048
  21. Kim JH, Cho SY, Lee JH, Jeong SM, Yoon IS, Lee BH. Neuroprotective effects of ginsenoside Rg3 against homocysteine-induced excitotoxicity in rat hippocampus. Brain Res. 2007;1136(1):190-9. https://doi.org/10.1016/j.brainres.2006.12.047
  22. 성주원, 김기역, 반효정, 신정원, 강희, 김성준, 손낙원. 黃連解毒湯이 척수 압박손상 흰 쥐의 운동기능 장애에 미치는 영향. 한방재활의학과학회지. 2010;20(4):1-15.
  23. 박원상, 김은석, 신전원, 김범회, 김성준, 강희, 손낙원, 신정원. 狗脊이 흰쥐의 척수압박 에 의한 신경세포 손상에 미치는 영향. 한방재활의학과학회지. 2010;20(2):1-15.
  24. 김기역. 黃連解毒湯이 척수 압박손상 흰쥐의 iNOS와 COX-2 발현에 미치는 영향. 경희대학교 동서의학대학원 석사학위논문. 2010:1-32.
  25. Marques SA, Garcez VF, Del Bel EA, Martinez AM. A simple, inexpensive and easily reproducible model of spinal cord injury in mice: morphological and functional assessment. J Neurosci Methods. 2009;177(1):183-93. https://doi.org/10.1016/j.jneumeth.2008.10.015
  26. Ward RE, Huang W, Curran OE, Priestley JV, Michael-Titus AT. Docosahexaenoic acid prevents white matter damage after spinal cord injury. J Neurotrauma. 2010;27(10):1769-80. https://doi.org/10.1089/neu.2010.1348
  27. 대한정형외과학회. 정형외과학 제 6판. 서울:최신의학사. 2006:994-1005.
  28. Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord. 2006;44:523-9. https://doi.org/10.1038/sj.sc.3101893
  29. DeVivo MJ. Causes and costs of spinal cord injury in the United States. Spinal Cord. 1997;35:809-13. https://doi.org/10.1038/sj.sc.3100501
  30. Barnabe-Heider F, Frisen J. Stem cells for spinal cord repair. Cell Stem Cell. 2008;3:16-24. https://doi.org/10.1016/j.stem.2008.06.011
  31. Louro J, Pearse DD. Stem and progenitor cell therapies: recent progress for spinal cord injury repair. Neurol Res. 2008;30:5-16. https://doi.org/10.1179/174313208X284070
  32. Bunge MB. Novel combination strategies to repair the injured mammalian spinal cord. J Spinal Cord Med. 2008;31:262-69. https://doi.org/10.1080/10790268.2008.11760720
  33. Schwab JM, Brechtel K, Mueller CA, Failli V, Kaps HP, Tuli SK, Schluesener HJ. Experimental strategies to promote spinal cord regeneration-an integrative perspective. Prog Neurobiol. 2006;78:91-116. https://doi.org/10.1016/j.pneurobio.2005.12.004
  34. Tator CH, Koyanagi I. Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg. 1997;86(3):483-92. https://doi.org/10.3171/jns.1997.86.3.0483
  35. Popovich PG, Wei P, Stokes BT. Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol. 1997;377(3):443-64. https://doi.org/10.1002/(SICI)1096-9861(19970120)377:3<443::AID-CNE10>3.0.CO;2-S
  36. Ackery A, Tator C, Krassioukov A. A global perspective on spinal cord injury epidemiology. J Neurotrauma. 2004;21:1355-70. https://doi.org/10.1089/neu.2004.21.1355
  37. Bunge MB. Novel combination strategies to repair the injured mammalian spinal cord. J Spinal Cord Med. 2008;31:262-9. https://doi.org/10.1080/10790268.2008.11760720
  38. Lu J, Waite P. Advances in spinal cord regeneration. Spine. 1999;24:926-30. https://doi.org/10.1097/00007632-199905010-00019
  39. BK Kwon, W Tetzlaff. Pathophysiology and pharmacologic treatment of acute spinal cord injury. The Spine Journal. 2004;4(4):451-64. https://doi.org/10.1016/j.spinee.2003.07.007
  40. 정춘근, 김은영, 신정원, 손영주, 이현삼, 정혁상, 손낙원. 청폐사간탕이 당뇨유발 흰쥐의 뇌 허혈손상에 미치는 영향. 대한한의학회지. 2005;26:217-30.
  41. 강승준, 금현수, 전연이, 이은주, 박치상, 박창국. 석창포가 뇌허혈을 유발시킨 백서에서의 뇌신경 보호효과. 대한한방내과학회지. 2001;22:341-51.
  42. 강봉주, 조동욱, 홍성길. 저산소상태에서 육미지황원의 뇌신경세포 보호효과에 대한 연구. 한국한의학연구원논문집. 2001;7:115-24.
  43. 이상인. 본초학. 서울:의약사. 1975:97-8.
  44. 김호철. 한약약리학. 서울:집문당. 2001:451.