DOI QR코드

DOI QR Code

On Water CuSO4. 5H2O-catalyzed Synthesis of 2-amino-4H-chromenes

  • Behbahani, Farahnaz Kargar ;
  • Maryam, Sadeghi
  • Received : 2013.01.29
  • Accepted : 2013.04.09
  • Published : 2013.06.20

Abstract

Sustainable development is a balance between environment and development. Sustainable development requires sustainable supplies of clean, affordable, and renewable energy sources that do not cause negative impact to the society. This article introduces a green chemistry method to synthesize 2-amino-4H-chromenes that reduces or eliminates the use and generation of hazardous substances in the design, manufacture, and application of chemical products. This method is described using copper (II) sulfate pentahydrate, as a green and reusable catalyst on water. The products were obtained at very good yields, short reaction time, and at lower cost than other reported procedures.

Keywords

Green chemistry;Water;Chromene;$CuSO_4.5H_2O$;Synthesis

References

  1. Jin, T. S.; Xiao, J. C.; Wang, S. J.; Li, T. S. Ultrason Sonochem. 2004, 11, 393.
  2. Ballini, R.; Bigi, F.; Conforti, M. L. Catal. Today 2000, 60, 305. https://doi.org/10.1016/S0920-5861(00)00347-3
  3. Wang, X.; Shi, D.; Tu, S. Synth. Commun. 2004, 34, 509. https://doi.org/10.1081/SCC-120027291
  4. Kumar, B. S.; Srinivasulu, N.; Udupi, R.; Rajitha, B.; Reddy, Y. T.; Reddy, P. N.; Kumar, P. Russ. J. Org. Chem. 2006, 42, 1813. https://doi.org/10.1134/S1070428006120098
  5. Shestopalov, A. M.; Emelianova, Y. M.; Nesterov, V. N. Russ. Chem. Bull. 2002, 51, 2238. https://doi.org/10.1023/A:1022135402451
  6. Maggi, R.; Ballini, R.; Sartori, G. Tetrahedron Lett. 2004, 45, 2297. https://doi.org/10.1016/j.tetlet.2004.01.115
  7. Kumar, D.; Reddy, V. B.; Mishra, B. K.; Rana, G. R.; Mallikarjuna, N.; Nadagouda, R.; Varma S. Tetrahedron 2007, 45, 2297.
  8. Heravi, M. M.; Bakhtiari, Kh.; Zadsirjan,V.; Bamoharram, F. F.; Heravi, M. O. Bioorg. Med. Chem. Lett. 2007, 17, 4262. https://doi.org/10.1016/j.bmcl.2007.05.023
  9. Gong, K.; Wang, H. L.; Fang Liu, Z. L. Catal. Commun. 2008, 9, 650. https://doi.org/10.1016/j.catcom.2007.07.010
  10. Ren, Y. M.; Cai, C.H. Catal. Commun. 2008, 9, 1017. https://doi.org/10.1016/j.catcom.2007.10.002
  11. Balalaie, S.; Ramezanpour, S.; Bararjanian, M.; Gross, J. H. Synth. Commun. 2008, 38, 1078. https://doi.org/10.1080/00397910701862865
  12. Naimi-Jamal, M. R.; Mashkouri, S.; Sharifi, A. Mol. Divers. 2010, 14, 473. https://doi.org/10.1007/s11030-010-9246-5
  13. Behbahani, F. K.; Yektanezhad, T.; Khorrami, A. R. Heterocycles 2010, 81, 2313. https://doi.org/10.3987/COM-10-12019
  14. Behbahani, F. K.; Ziaei, P.; Fakhroueian, Z.; Doragi, N. Monatsh. Chem. 2011, 142, 901. https://doi.org/10.1007/s00706-011-0523-5
  15. Heravi, M. M.; Daraie, M.; Behbahani, F. K.; Malakooti, R. Synth. Commun. 2010, 40, 1.
  16. Behbahani, F. K.; Doragi, N.; Heravi, M. M. Synth. Commun. 2012, 42, 705. https://doi.org/10.1080/00397911.2010.529354
  17. Behbahani, F. K.; Homafar, M. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 2012, 42, 291-295. https://doi.org/10.1080/15533174.2011.610020
  18. Khurana, J. M.; Nand, B.; Saluja, P. Tetrahedron 2010, 66, 5637. https://doi.org/10.1016/j.tet.2010.05.082
  19. Wang, X. S.; Yanga, G. S.; Zhao, G. Tetrahedron 2008, 19, 709. https://doi.org/10.1016/j.tetasy.2008.02.018
  20. Mehadi, M.; Fakher, C.; Mansour, S. Heterocyclic Commun. 2005, 11, 139.
  21. Latif, A.; Fahim, F. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1990, 29, 664.
  22. Heravi, M. M.; Baghernejad, B.; Oskooie, H. A. J. Chinese Chem. Soc. 2008, 55, 659. https://doi.org/10.1002/jccs.200800098
  23. Grieco, P. A. Organic Synthesis in Water; Blackie Academic and Professional: London, 1998.
  24. Zhao, Y.; Ge, Z. M.; Cheng, T. M.; Li, R. T. Synlett. 2007, 10, 1529.
  25. Kobayashi, S.; Manabe, K. Acc. Chem. Res. 2002, 35, 209. https://doi.org/10.1021/ar000145a
  26. Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025. https://doi.org/10.1021/cr940089p
  27. Fringuelli, F.; Pizzo, F.; Vaccarol, L. Tetrahedron Lett. 2001, 42, 1131. https://doi.org/10.1016/S0040-4039(00)02164-X
  28. Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccarol, L. Curr. Org. Chem. 2003, 7, 1661. https://doi.org/10.2174/1385272033486251
  29. Fringuelli, F.; Pizzo, F.; Tortoioli, S.; Vaccarol, L. J. Org Chem. 2003, 68, 8248. https://doi.org/10.1021/jo0348266
  30. Fringuelli, F.; Taticchi, A. The Diels−Alder Reaction. Selected Practical Methods; Wiley: Chichester, 2002.
  31. Amantin, D.; Fringuelli, F.; Pizzo, F.; Vaccarol, L. J. Org Chem. 2001, 66, 4463. https://doi.org/10.1021/jo0156215
  32. Khan, A. T.; Lokman, H.; Choudhury, L. H.; Ghosh, S. Tetrahedron Lett. 2004, 45, 7891. https://doi.org/10.1016/j.tetlet.2004.08.141
  33. Akhlaghinia, B.; Tavakoli, S. Synthesis 2005, 1775.
  34. Asadolah, K.; Heravi, M. M. Monatshefte. Chem. 2007, 138, 867. https://doi.org/10.1007/s00706-007-0684-4
  35. Heravi, M. M.; Taheri, S.; Bakhtiari, K.; Oskooie, H. A. Monatsh. Chem. 2006, 37, 1075.
  36. Heravi, M. M.; Taheri, S.; Bakhtiari, K.; Oskooie, H. A. Catal. Commun. 2007, 8, 211. https://doi.org/10.1016/j.catcom.2006.06.013
  37. Liao, M.; Wang, J. Tetrahedron Lett. 2006, 47, 8859. https://doi.org/10.1016/j.tetlet.2006.10.059
  38. Yadav, J. S.; Subba Reddy, B. V.; Reddy, G. M.; Narasimha Chary, D. Tetrahedron Lett. 2007, 48, 8773. https://doi.org/10.1016/j.tetlet.2007.09.160
  39. Lee, B.-Y.; Park, S. R.; Baejeon, H.; SooKim, K. Tetrahedron Lett. 2006, 47, 5105. https://doi.org/10.1016/j.tetlet.2006.05.079
  40. Sun, W.; Cama, L. J.; Birzin, E. T.; Warrier, S.; Locco, L.; Mosley, R.; Hammond, M. L.; Rohrer, S. P. Bioorg. Med. Chem. Lett. 2006, 16, 1468. https://doi.org/10.1016/j.bmcl.2005.12.057
  41. Stachulski, A. V.; Berry, N. G.; Low, A. C. L.; Moores, S.; Row, E.; Warhurst, D. C.; Adagu, I. S.; Rossignol, J. F. J. Med. Chem. 2006, 49, 1450. https://doi.org/10.1021/jm050973f
  42. Garino, C.; Bihel, F.; Pietrancosta, N.; Laras, Y.; Quelever, G.; Woo, I.; Klein, P.; Bain, J.; Boucher, J. L.; Kraus, J. L. Bioorg. Med. Chem. Lett. 2005, 15, 135. https://doi.org/10.1016/j.bmcl.2004.10.018
  43. Simone, R. W. D.; Currie, K. S.; Mitchell, S. A.; Darrow, J. W.; Pippin, D. A. Comb. Chem. High Throughput Screen. 2004, 7, 473. https://doi.org/10.2174/1386207043328544
  44. Patchett, A. A.; Nargund, R. P. Annu. Rep. Med. Chem. 2000, 35, 289. https://doi.org/10.1016/S0065-7743(00)35027-8
  45. Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Eur. J. Med. Chem. 1993, 28, 517. https://doi.org/10.1016/0223-5234(93)90020-F
  46. Foye, W. O. Prinicipidi ChemicoFarmaceutica; Piccin: Padova, PD, 1991; p 416.
  47. Skommer, J.; Wlodkowic, D.; Matteo, M.; Pelkonen M. E. J. Leukemia Res. 2006, 30, 322. https://doi.org/10.1016/j.leukres.2005.08.022
  48. Kemnitzer, W.; et al. Bioorg. Med. Chem. Let. 2005, 15, 4745. https://doi.org/10.1016/j.bmcl.2005.07.066
  49. Ballini, R.; Bosica, G.; Conforti, M. L.; Maggi, R.; Mazzacanni, A.; Righi, P.; Sartori, G. Tetrahedron 2001, 57, 1395. https://doi.org/10.1016/S0040-4020(00)01121-2
  50. Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, 1998.
  51. Li, C. J.; Chang, T. H. Organic Reactions in Aqueous Media; John Wiley: New York, 1997.

Cited by

  1. Ultrasound irradiation for the green synthesis of chromenes using l-arginine-functionalized magnetic nanoparticles as a recyclable organocatalyst vol.4, pp.79, 2014, https://doi.org/10.1039/C4RA06198E
  2. SBA-15@methenamine-HPA: a novel, simple, and efficient catalyst for one-pot three-component synthesis of 2-amino-4H-chromene derivatives in aqueous medium vol.43, pp.10, 2017, https://doi.org/10.1007/s11164-017-2940-5
  3. The chemical reactivity of naphthols and their derivatives toward α-cyanocinnamonitriles and ethyl α-cyanocinnamates: A review of synthesis, reactions and applications of naphthopyrano vol.4, pp.4, 2013, https://doi.org/10.5155/eurjchem.4.4.467-483.775
  4. One-pot synthesis of some 2-amino-4H-chromene derivatives using triethanolamine as a novel reusable organocatalyst under solvent-free conditions and its application in electrosynthesis of silver nanoparticles vol.87, pp.5, 2017, https://doi.org/10.1134/S1070363217050280
  5. Nano polypropylenimine dendrimer (DAB-PPI-G1): as a novel nano basic-polymer catalyst for one-pot synthesis of 2-amino-2-chromene derivatives vol.5, pp.54, 2015, https://doi.org/10.1039/C5RA04458H
  6. Synthesis of 1,2,3,4-Tetrahydroquinolines Using AlCl3in Aqua Mediated vol.58, pp.1, 2014, https://doi.org/10.5012/jkcs.2014.58.1.44
  7. One-pot Synthesis of 2-Amino-2-chromene and 2-Amino-3-cyano-4H-pyran Derivatives Promoted by Potassium Fluoride vol.47, pp.5, 2015, https://doi.org/10.1080/00304948.2015.1066647
  8. Efficient and Green Preparation of 2-Amino-4H-chromenes by a Room-Temperature, Na2CO3-Catalyzed, Three-Component Reaction of Malononitrile, Benzaldehydes, and Phloroglucinol or Resorcinol in Aqueous Medium vol.45, pp.13, 2015, https://doi.org/10.1080/00397911.2015.1031249
  9. Synthesis of 2-amino-3-cyano 4-H-chromenes containing quinoline in water: computational study on substituent effects vol.14, pp.4, 2017, https://doi.org/10.1007/s13738-016-1032-6
  10. -chromenes pp.00094536, 2018, https://doi.org/10.1002/jccs.201800203
  11. An affordable DABCO-based ionic liquid efficiency in the synthesis of 3-amino-1-aryl-1H-benzo[f] chromene-2-carbonitrile, 1-(benzothiazolylamino)phenylmethyl-2-naphthol, and 1-(benzoimidazolylamino)phenylmethyl-2-naphthol derivatives vol.15, pp.9, 2018, https://doi.org/10.1007/s13738-018-1408-x
  12. Copper-Catalysed Multicomponent Syntheses of Heterocycles vol.8, pp.2, 2019, https://doi.org/10.1002/ajoc.201800619

Acknowledgement

Supported by : Korean Chemical Society