DOI QR코드

DOI QR Code

Effect of HPAM on Calcium Carbonate Crystallization

  • Jing, Guolin ;
  • Tang, Shan ;
  • Li, Xiaoxiao
  • Received : 2013.02.26
  • Accepted : 2013.03.18
  • Published : 2013.06.20

Abstract

With the wide application of ASP (alkaline-surfactant-polymer) flooding, the scaling becomes more and more serious, which is harmful to the oilfield and environment. In order to investigate the effects of HPAM on calcium carbonate crystallization, the crystallization behaviors of $CaCO_3$ in HPAM (Hydrolyzed polyacrylamide) solutions were studied and the composition and morphology of $CaCO_3$ crystal were investigated in different concentrations of polyacrylamide solutions. The crystal forms and morphologies of $CaCO_3$ were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The results show that the crystallization of $CaCO_3$ is strongly influenced by the HPAM. The paper analyzed the internal cause, and the results show: The reasons leading to the change of morphology are carboxyl groups in polyacrylamide molecule and $Ca^{2+}$ in solution form chelates by coordination bond. And the chelates are adsorbed on the calcium hydroxide surfaces of solid-liquid interfaces so as to change the formation rate of calcium carbonate crystal nucleus. The research provides a reliable basis for the mechanism research of the scaling problem in the oil extraction process of ASP flooding and the adoption of scale inhibition and scale inhibitor.

Keywords

HPAM;Calcium carbonate crystallization;Vaterite;Internal cause

References

  1. Smith, B. R. Desalination 1967, 3, 263. https://doi.org/10.1016/S0011-9164(00)80155-1
  2. Hasson, D.; Bramson, D.; Limoni-Relis, B.; Semiat, R. Desalination 1997, 108, 67. https://doi.org/10.1016/S0011-9164(97)00010-6
  3. Hasson, D.; Semiat, R.; Bramson, D.; Bush, M.; Limoni-Relis, B. Desalination 1998, 118, 285. https://doi.org/10.1016/S0011-9164(98)00149-0
  4. Ketrane, R.; Saidani, B.; Gil, O.; Leleyter, L.; Baraud, F. Desalination 2009, 249, 1397-1404. https://doi.org/10.1016/j.desal.2009.06.013
  5. Shakkthivel, P.; Sathiyamoorthi, R.; Vasudevan, T. Desalination 2004, 164, 111-123. https://doi.org/10.1016/S0011-9164(04)00170-5
  6. Gill, S. Desalination 1999, 124, 43-50. https://doi.org/10.1016/S0011-9164(99)00087-9
  7. Plummer, L. N.; Busenberg, E. Geochim. Cosmochim. Acta. 1982, 46, 1011-1040. https://doi.org/10.1016/0016-7037(82)90056-4
  8. Todd, A. C.; Yuan, M. D. SPE. 1990, 5, 279-285.
  9. Peyvandi, K.; Haghtalab, A.; Omidkhah, M. R. J. Cryst. Growth 2012, 354, 109-118. https://doi.org/10.1016/j.jcrysgro.2012.05.020
  10. Sorbie, K. S.; Mackay, E. J. Pet. Sci. Eng. 2000, 27, 85-106. https://doi.org/10.1016/S0920-4105(00)00050-4
  11. Crabtree, M.; Eslinger, D.; Fletcher, P.; Johnson, A.; King, G. Oilfield Review 1999, 30-45.
  12. Andreassen, J. P. J. Cryst. Growth 2005, 274, 256-264. https://doi.org/10.1016/j.jcrysgro.2004.09.090
  13. Manoli, F.; Dalas, E. J. Cryst. Growth 2000, 217, 416-421. https://doi.org/10.1016/S0022-0248(00)00514-5
  14. Wang, C.; Li, S. P.; Li, T. D. Desalination 2009, 249, 1-4. https://doi.org/10.1016/j.desal.2009.06.006
  15. Ghizellaoui, S.; Ledion, J.; Ghizellaoui, S.; Chibani, A. Desalination. 2004, 166, 315-327. https://doi.org/10.1016/j.desa1.2004.06.086
  16. Kirboga, S.; One, M. Colloid Surf., B. 2012, 91, 18-25. https://doi.org/10.1016/j.colsurfb.2011.10.031
  17. Naka, K.; Chujo, Y. C. R. Chimie 2003, 6, 1193. https://doi.org/10.1016/j.crci.2003.08.009
  18. Jada, A.; Ait A. R.; Jacquemet, C.; Suau, J. M.; Guerret, O. J. Cryst. Growth 2007, 306, 373. https://doi.org/10.1016/j.jcrysgro.2007.05.046
  19. Wada, N.; Kanamura, K.; Umegaki, T. J. Colloid Interface Sci. 2001, 233, 65. https://doi.org/10.1006/jcis.2000.7215
  20. Mao, Z. F.; Huang, J. H. J. Solid State Chem. 2007, 180, 453. https://doi.org/10.1016/j.jssc.2006.11.002
  21. Hacke, S.; Mobius, D.; Lieu, V. T. Appl. Surf. Sci. 2005, 246, 362. https://doi.org/10.1016/j.apsusc.2004.11.040
  22. Wang, L. L.; Meng, Z. L.; Yu, Y. Y.; Meng, Q. W.; Chen, D. Z. Polymer 2008, 49, 1199. https://doi.org/10.1016/j.polymer.2008.01.023
  23. Neville, A. Energy Fuels 2012, 26, 4158-4166. https://doi.org/10.1021/ef300351w
  24. Crabtree, M. Oilfield Rev. 1999, 30-45.
  25. DeLeeuw, N. H.; Parker, S. C. J. Phys. Chem. B. 1998, 102, 2914. https://doi.org/10.1021/jp973210f
  26. Ukrainczyk, M.; Kontrec, J.; Ivancic, V. B.; Brecevic, L.; Kralj, D. Powder Technol. 2007, 171, 192. https://doi.org/10.1016/j.powtec.2006.10.046
  27. Deng, S. B.; Yu, G.; Chen, Z. X.; Wu, D.; Xia, F. J.; Jiang, N. Colloid Surf., A. 2009, 332, 63-69. https://doi.org/10.1016/j.colsurfa.2008.09.004
  28. Rivas, H.; Gutierrez, X.; Zirrit, J. L.; Anton, R. E. Colloid Surf., A. 1997, 305-329.
  29. Luis, E. Z.; Nestor, V. Q.; Pintos, T. S.; Salager, J. L. J. Pet. Sci. Eng. 2005, 47, 197-208. https://doi.org/10.1016/j.petrol.2005.03.002
  30. Gabrielli, C.; Maurin, G.; Poindessous, G.; Rosset, R. J. Cryst. Growth 1999, 200, 236-250. https://doi.org/10.1016/S0022-0248(98)01261-5

Cited by

  1. Mineral carbonation of red gypsum via pH-swing process: Effect of CO2 pressure on the efficiency and products characteristics vol.264, 2015, https://doi.org/10.1016/j.cej.2014.11.125
  2. HPAM assisted controllable synthesis of peanut-like CaCO 3 in fixed silicate solution vol.535, 2017, https://doi.org/10.1016/j.colsurfa.2017.09.031

Acknowledgement

Supported by : Scientific Research Fund of Heilongjiang Provincial Education Department