DOI QR코드

DOI QR Code

Correlation of Liquid-Liquid Equilibrium of Four Binary Hydrocarbon-Water Systems, Using an Improved Artificial Neural Network Model

  • Lv, Hui-Chao ;
  • Shen, Yan-Hong
  • Received : 2012.12.24
  • Accepted : 2013.04.30
  • Published : 2013.06.20

Abstract

A back propagation artificial neural network model with one hidden layer is established to correlate the liquid-liquid equilibrium data of hydrocarbon-water systems. The model has four inputs and two outputs. The network is systematically trained with 48 data points in the range of 283.15 to 405.37K. Statistical analyses show that the optimised neural network model can yield excellent agreement with experimental data(the average absolute deviations equal to 0.037% and 0.0012% for the correlated mole fractions of hydrocarbon in two coexisting liquid phases respectively). The comparison in terms of average absolute deviation between the correlated mole fractions for each binary system and literature results indicates that the artificial neural network model gives far better results. This study also shows that artificial neural network model could be developed for the phase equilibria for a family of hydrocarbon-water binaries.

Keywords

Hydrocarbon-water system;Liquid-liquid equilibrium;Artificial neural network;Correlation

References

  1. Lashkarbolooki, M.; Hezave, A. Z.; Ayatollahi, S. Fluid Phase. Equilib. 2012, 324, 102. https://doi.org/10.1016/j.fluid.2012.03.015
  2. Hezave, A. Z.; Lashkarbolooki, M.; Raeissi, S. Fluid Phase Equilib. 2012, 314, 128. https://doi.org/10.1016/j.fluid.2011.10.028
  3. Sinha, K.; Chowdhury, S.; Saha, P. D.; Datta, S. Ind. Crop. Prod. 2013, 41, 165. https://doi.org/10.1016/j.indcrop.2012.04.004
  4. Mandal,S.; Jana, A. K. Int. J. Hydrogen Energy 2013, 38, 1244. https://doi.org/10.1016/j.ijhydene.2012.11.067
  5. Lashkarbolooki, M.; Shafipour, Z. S.; Hezave, A. Z.; Farmani, H. J. Supercrit. Fluids 2013, 75, 144. https://doi.org/10.1016/j.supflu.2012.12.032
  6. Huynh, D. N.; de Hemptinne, J. C.; Lugo, R.; Passarello, J. P.; Tobaly, P. Ind. Eng. Chem. Res. 2011, 50, 7467. https://doi.org/10.1021/ie102045g
  7. Fonseca, J. M. S.; von Solms, N. Fluid Phase Equilib. 2012, 329, 55. https://doi.org/10.1016/j.fluid.2012.05.024
  8. Wang, L. S.; Guo, T. M. Chem. Eng. (China) 1996, 24, 59.
  9. Riaz, M.; Yussuf, M. A.; Kontogeorgis, G. M.; Stenby, E. H.; Yan, W.; Solbraa, E. Fluid Phase Equilib. 2013, 337, 298. https://doi.org/10.1016/j.fluid.2012.09.009
  10. Panagiotopoulos, A. Z.; Reid, R. C. Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem. 1985, 30, 46.
  11. Neau, E.; Escandell, J.; Nicolas, C. Ind. Eng. Chem. Res. 2010, 49, 7580. https://doi.org/10.1021/ie100121c
  12. Escandell, J.; Neau, E.; Nicolas, C. Fluid Phase Equilib. 2011, 301, 80. https://doi.org/10.1016/j.fluid.2010.11.009
  13. Gebreyohannes, S.; Yerramsetty, K.; Neely, B. J.; Gasem, K. A. M. Fluid Phase Equilib. 2013, 339, 20. https://doi.org/10.1016/j.fluid.2012.11.020
  14. Si-Moussa, C.; Hanini, S.; Derriche, R.; Bouhedda, M.; Bouzidi, A. Braz. J. Chem. Eng. 2008, 25, 183. https://doi.org/10.1590/S0104-66322008000100019
  15. Dehghani, M. R.; Modarress, H.; Bakhshi, A. Fluid Phase Equilib. 2006, 244, 153. https://doi.org/10.1016/j.fluid.2006.04.003
  16. Mohammadi, A. H.; Richon, D. Ind. Eng. Chem. Res. 2007, 46, 1431. https://doi.org/10.1021/ie060494u
  17. Ketabchi, S.; Ghanadzadeh, H.; Ghanadzadeh, A.; Fallahi, S.; Ganji, M. J. Chem. Thermodyn. 2010, 42, 1352. https://doi.org/10.1016/j.jct.2010.05.018
  18. Faundez, C. A.; Quiero, F. A.; Valderrama, J. Q. Fluid Phase Equilib. 2010, 292, 29. https://doi.org/10.1016/j.fluid.2010.01.001
  19. Lashkarbolooki, M.; Vaferi, B.; Rahimpour, M. R. Fluid Phase Equilib. 2011, 308, 35. https://doi.org/10.1016/j.fluid.2011.06.002
  20. Safamirzaei, M.; Modarress, H. Fluid Phase Equilib. 2011, 309, 53. https://doi.org/10.1016/j.fluid.2011.06.022
  21. Lashkarbolooki, M.; Vaferi, B.; Rahimpour, M. R. Fluid Phase Equilib. 2011, 308, 35. https://doi.org/10.1016/j.fluid.2011.06.002
  22. Safamirzaei, M.; Modarress, H. Fluid Phase Equilib. 2011, 310, 150. https://doi.org/10.1016/j.fluid.2011.08.004
  23. Bakhbakhi,Y. Expert Syst. Appl. 2011, 38, 11355. https://doi.org/10.1016/j.eswa.2011.03.003
  24. Abedini, R.; Zanganeh, I.; Mohagheghian, M. J. Phase. Equilib. Diff. 2011, 32, 105. https://doi.org/10.1007/s11669-011-9851-8
  25. Zarenezhad, B.; Aminian, A. Korean J. Chem. Eng. 2011, 28, 1286. https://doi.org/10.1007/s11814-010-0492-0
  26. Pahlavanzadeh, H.; Nourani, S.; Saber, M. J. Chem. Thermodyn. 2011, 43, 1775. https://doi.org/10.1016/j.jct.2011.05.032
  27. Nami, F.; Deyhimi, F. J. Chem. Thermodyn. 2011, 43, 22. https://doi.org/10.1016/j.jct.2010.07.011
  28. Shokri, A.; Hatami,T.; Khamforoush, M. J. Supercrit. Fluids 2011, 58, 49. https://doi.org/10.1016/j.supflu.2011.04.011
  29. Rohani, A. A.; Pazuki, Gh.; Abedini Najafabadi, H.; Seyfi, S.; Vossoughi, M. Expert. Syst. Appl. 2011, 38, 1738. https://doi.org/10.1016/j.eswa.2010.07.099

Cited by

  1. Modeling of the phase equilibria of aqueous two-phase systems using three-dimensional neural network vol.34, pp.1, 2017, https://doi.org/10.1007/s11814-016-0245-9

Acknowledgement

Supported by : Korean Chemical Society