DOI QR코드

DOI QR Code

Heterostructured Nanophotocatalysts for Degradation of Organophosphate Pesticides from Aqueous Streams

  • Kaur, Paramjeet ;
  • Bansal, Priti ;
  • Sud, Dhiraj
  • Received : 2013.02.28
  • Accepted : 2013.05.10
  • Published : 2013.06.20

Abstract

The present paper focuses on the synthesis, characterization and application of nanophotocatalyst for degradation of quinalphos and monocrotophos. Novel heterostructured ZnO/$TiO_2$ photocatalyst ($Z_9T$) was prepared and characterized with X-ray diffraction (XRD), SEM and UV-vis diffuses reflectance spectroscopy. The average crystalline size of synthesized $Z_9T$ was found to be 21.48 nm. The pesticides were degraded in the presence of nanophotocatalysts i.e., $TiO_2$, ZnO, $TiO_2$/ZnO mixed in various proportions and heterostructured nanophotocatalyst synthesized by Sol-Gel method. The batch experiments were performed by adding photocatalyst to 100 ml of pesticide solution and suspension was subjected to irradiation under UV light. In case of mixed catalyst, the maximum degradation of monocrotophos and quinalphos has been observed when ZnO and $TiO_2$ were in the ratio of 7:3 and 8:2 respectively. The degradation efficiency with synthesized heterostructured nanophotocatalyst ($Z_9T$) was found to be comparable with $TiO_2$.

Keywords

Nanophotocatalyst;Degradation;Quinalphos;Monocrotophos;$Z_9T$

References

  1. Kansal, S. K.; Singh, M.; Kaur, M. P.; Sud, D. Indian Chem. Eng., B. 2006, 47, 111.
  2. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. (Washington, D.C.) 1995, 95, 69. https://doi.org/10.1021/cr00033a004
  3. Fujishima, A.; Hashimoto, K.; Iyoda, T.; Fukayama, S.; Yoshimoto, T.; Saitoh, T. U.S. Patent US6939611, 2005.
  4. Sud, D.; Kaur, P.; Crit. Rev. Env. Sci. Tech. 2012, 42, 2365. https://doi.org/10.1080/10643389.2011.574184
  5. Mor, G. K.; Varghese, O. K.; Paulose, M.; Grimes, C. A. Sensor Lett. 2003, 1, 42. https://doi.org/10.1166/sl.2003.013
  6. Bessa, E.; Sant'Anna, G. L. Jr.; Dezotti, M. J. Adv. Oxid. Technol. 1999, 4, 196.
  7. Cardoso, J. C.; Lizier, T. M.; Zanoni, M. V. B. Appl. Catal., B 2010, 99, 96. https://doi.org/10.1016/j.apcatb.2010.06.005
  8. Reddy, P. S.; Ghewande, M. P. Pesticides 1986, 20, 52.
  9. Jena, M., Dani, R. C., Rajamani, S. Oryza. 1990, 27, 96.
  10. Banerjee, S. K.; Turkar, K. S.; Wanjari, R. R. Pestology 2000, 24, 14.
  11. Xu, Y.; Wang, L.; Gu, G. Environ. Sci. 2002, 21, 574.
  12. Zhang, L.; Yan, F.; Wang, Y. J. Inorg. Mater. 2006, 42, 1379. https://doi.org/10.1134/S002016850612017X
  13. Doong, R.; Chang, W. J. Photochem. Photobiol., A 1997, 107, 239. https://doi.org/10.1016/S1010-6030(96)04579-0
  14. Kralj, M. B.; Cernigoj, U.; Franko, M. Water Res. 2007, 41, 4504. https://doi.org/10.1016/j.watres.2007.06.016
  15. Moctezuma, E.; Leyva, E.; Palestino, G. J. Photochem. Photobiol., A 2006, 186, 71.
  16. Anandan, S.; Vinu, A.; Sheeja Lovely, K. L. P.; Gokulakrishnan, N.; Srinivasu, P.; Mori, T.; Murugesan, V.; Sivamurugan, V.; Ariga, K. J. Mol. Catal. A: Chem. 2007, 266, 149. https://doi.org/10.1016/j.molcata.2006.11.008
  17. Anandan, S.; Kathiravan, K.; Murugesan, V.; Ikuma, Y. Catal. Commun. 2009, 10, 1014. https://doi.org/10.1016/j.catcom.2008.12.054
  18. Shifu, C.; Gengyu, C. Solar Energy 2005, 79, 1. https://doi.org/10.1016/j.solener.2004.10.006
  19. Kansal, S. K.; Singh, M.; Sud, D. J. Hazard. Mater. 2007, 141, 581. https://doi.org/10.1016/j.jhazmat.2006.07.035
  20. Bansal, P.; Bhullar, N.; Sud, D. Desalin. Water Treat. 2009, 12, 108. https://doi.org/10.5004/dwt.2009.944
  21. Bansal, P.; Singh, D.; Sud, D. Sep. Purif. Technol. 2010, 72, 357. https://doi.org/10.1016/j.seppur.2010.03.005
  22. Bansal, P.; Dhir, A.; Parkash, N. T.; Sud, D. Indian J. Chem., Sect. A. 2011, 50, 991.
  23. Kansal, S. K.; Singh, M.; Sud, D. Chem. Eng. Commun. 2007, 194, 787. https://doi.org/10.1080/00986440701193803
  24. Rahman, A.; Muneer, M. Desalination 2005, 181, 161. https://doi.org/10.1016/j.desal.2005.02.019
  25. Gonclaves, M. S. T.; Oliveira-Campose, A. M. F.; Pinto, E. M. M. S.; Plasencia, P. M. S.; Queiroz, M. J. R. P. Chemosphere 1999, 39, 781. https://doi.org/10.1016/S0045-6535(99)00013-2
  26. Kaur, P.; Sud, D. J. Mol. Catal. A: Chem. 2012, 365, 32. https://doi.org/10.1016/j.molcata.2012.08.005
  27. Daneshvar, N.; Salari, D.; Khataee, A. R. J. Photochem. Photobiol., A 2003, 162, 317.
  28. Zhu, X. L.; Yuan, C. W.; Bao, Y. C.; Yang, J. H.; Wu, Y. Z. J. Mol. Catal. A: Chem. 2005, 229, 95. https://doi.org/10.1016/j.molcata.2004.11.010
  29. Liu, W.; Chen, S.; Zhao, W.; Zhang, S. Desalination 2009, 249, 1288. https://doi.org/10.1016/j.desal.2008.12.058
  30. Pirkannicmi, K.; Sillanpaa, M. Chemosphere 2002, 48, 1047. https://doi.org/10.1016/S0045-6535(02)00168-6
  31. Yu, H.; Zhang, S.; Zhao, H.; Zhang, H. Phys. Chem. 2010, 12, 6625.

Cited by

  1. Degradation of traditional and new emerging pesticides in water by nanomaterials: recent trends and future recommendations 2017, https://doi.org/10.1007/s13762-017-1512-y
  2. Photocatalytic degradation of monocrotophos and chlorpyrifos in aqueous solution using TiO2 under UV radiation vol.7, 2015, https://doi.org/10.1016/j.jwpe.2015.06.002
  3. Recent advances in nano-photocatalysts for organic synthesis 2016, https://doi.org/10.1016/j.arabjc.2016.07.007