DOI QR코드

DOI QR Code

ON BOUNDED SOLUTIONS OF PEXIDER-EXPONENTIAL FUNCTIONAL INEQUALITY

Chung, Jaeyoung;Choi, Chang-Kwon;Lee, Bogeun

  • Received : 2013.02.20
  • Accepted : 2013.03.13
  • Published : 2013.06.25

Abstract

Let G be a commutative group which is 2-divisible, $\mathbb{R}$ the set of real numbers and $f,g:G{\rightarrow}\mathbb{R}$. In this article, we investigate bounded solutions of the Pexider-exponential functional inequality ${\mid}f(x+y)-f(x)g(y){\mid}{\leq}{\epsilon}$ for all $x,y{\in}G$.

Keywords

bounded solution;exponential function;Pexider-exponential functional inequality

References

  1. J. Aczel and J. Dhombres, Functional equations in several variables, Cambridge University Press, New York-Sydney, 1989.
  2. M. Albert and J. A. Baker, Bounded solutions of a functional inequality, Canad. Math. Bull. 25 (1982), 491-495. https://doi.org/10.4153/CMB-1982-071-9
  3. J. A. Baker, The stability of cosine functional equation, Proc. Amer. Math. Soc. 80 (1980), 411-416. https://doi.org/10.1090/S0002-9939-1980-0580995-3
  4. J. A. Baker, J. Lawrence, and F. Zorzitto, The stability of the equation f(x+y) = f(x)f(y), Proc. Amer. Math. Soc. 74 (1979), 242-246.
  5. J. Chung, On solutions of exponential functional inequalities, preprint.
  6. D. H. Hyers, G. Isac and Th. M. Rassias, Stability of functional equations in several variables, Birkhauser, 1998.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)