DOI QR코드

DOI QR Code

Determination of Interaction Parameter χ of the 1,2,3-Triazole Crosslinked Polymer

1,2,3-트리아졸 폴리머의 상호계수 χ의 결정

  • Lee, Dong-Hoon (Department of Chemical Engineering, Pusan National University) ;
  • Lee, Sookyeong (Department of Polymer Science and Engineering, Pusan National University) ;
  • Kim, Kyoung Tae (Department of Chemistry, Kwangwoon University) ;
  • Paik, Hyun-Jong (Department of Polymer Science and Engineering, Pusan National University) ;
  • Jeon, Heung Bae (Department of Chemistry, Kwangwoon University) ;
  • Min, Byoung Sun (Advanced Propulsion Technology Center, Agency for Defense Development) ;
  • Kim, Wonho (Department of Chemical Engineering, Pusan National University)
  • Received : 2013.02.27
  • Accepted : 2013.03.13
  • Published : 2013.06.30

Abstract

The crosslinking density of polymer can be quantitatively calculated by the Flory-Rehner equation using the swelling experimental data and the lattice constant ${\beta}_1$ of interaction parameter (${\chi}$) in this equation should be chosen have used cautiously. This ${\beta}_1$ is the experimental data by rule of thumb, and researchers have used little different values respectively. Generally, the average molecular weight between crosslink points $M_c$ in the Flory-Rehner equation and the Mooney-Rivlin equation have the same value, and ${\beta}_1$ can be calculated when the $M_c$ in the Flory-Rehner equation is given. Therefore, in this research, firstly we calculated the $M_c$ using the selected ${\beta}_1$ (=0.34) and the swelling experimental data of 1,2,3-triazole polymer from the Flory-Rehner equation, secondly the $M_c$ from the Mooney-Rivlin equation is calculated by the tensile experimental data, and finally two $M_c$ were compared. As a result, two $M_c$ values were almost the same, and it was proved that the ${\beta}_1$ (=0.34) was selected properly.

Acknowledgement

Supported by : 국방과학연구소

References

  1. B. Gaur, B. Lochab, V. Choudhary and I. K. Varma, "Azido Polymers-Energetic Binders for Solid Rocket Propellants", J. Macromol. Sci., Part C: Polym. Rev., 43, 505 (2003). https://doi.org/10.1081/MC-120025976
  2. J. A. F. Joosten, N. T. H. Tholen, F. A. E. Maate, A. J. Brouwer, G. W. Van Esse, D. T. S. Rijkers, R. M. J. Liskamp and R. J. Pieters, "High-Yielding Microwave-Assisted Synthesis of Triazole-Linked Glycodendrimers by Copper-Catalyzed [3+2] Cycloaddition", Eur. J. Org. Chem., 70, 3182 (2005).
  3. C. M. Thompson and P. M. Hergenrother, "Phenylethynyl terminated arylene ether oxadiazole and triazole oligomers and their cured polymers", High Perform. Polym., 13, 313 (2001). https://doi.org/10.1088/0954-0083/13/4/309
  4. T. Keicher, W. Kuglstatter, S. Eisele, T. Wetzel and H. Krause, "Isocyanate-Free Curing of Glycidyl Azide Polymer (GAP) with Bis-Propargyl-Succinate (II), "Propellants, Explos., Pyrotech., 34, 210 (2009). https://doi.org/10.1002/prep.200900001
  5. A. R. Katritzky, N. K. Meher, S. Hanci, R. Gyanda, S. R. Tala, S. Mathai, R. S. Duran, S. Bernard, F. Sabri, S. K. Singh, J. Doskocz, and D. A. Ciaramitaro, "Preparation and Characterization of 1,2,3-Triazole-Cured Polymers from Endcapped Azides and Alkynes", J. Polym. Sci. Part A: Polym Chem,. 46, 238 (2008). https://doi.org/10.1002/pola.22376
  6. R. Huisgen, "1,3-Dipolar Cycloadditions Past and Future" , Angew. Chem. Int. Ed. Engl., 2, 565 (1963). https://doi.org/10.1002/anie.196305651
  7. A. R. Katritzky, S. K. Singh, N. K. Meher, J. Doskocz, K. Suzuki, R. Jiang, G. L. Sommen, D. A. Ciaramitaro and P. J. Steel, "Triazole-oligomers by 1,3-dipolar cycloaddition" , Arkivoc, 5, 43 (2006).
  8. L. Wang, Y. Song, R. Gyanda, R. Sakhuza, N. K. Meher, S. Hanci, K. Gyanda, S. Mathai, F. Sabri, D. A. Ciaramitaro, C. D. Bedford, A. R. Katritzky and R. S. Duran, "Preparation and mechanical properties of crosslinked 1,2,3-triazole-polymers as potential propellant binders", J. App. Polym. Sci., 117, 2612 (2010).
  9. R. Reed Jr., "Triazole Crosslinked Polymer", U.S. Patent 6103029 (2000).
  10. A. P. Manzara, "Azido Polymers Having Improved Burn Rate", U.S. Patent 5681904 (1997).
  11. D. Ciaramitaro, "Triazole Crosslinked Polymers in Recyclable Energetic Compositions and Method of Preparing the Same" , U.S. Patent 6872266 (2005).
  12. D. J. Plazek, G. F. Gu, R. G. Stacer, L. J. Su, E. D. von Meerwall and F. N. Kelley, "Viscoelastic dissipation and the tear energy of urethane-crosslinked polybutadiene elastomers" , J. Mater. Sci., 23, 1289 (1988). https://doi.org/10.1007/BF01154592
  13. J. E. Mark, "Experimental Determinations of Crosslink Densities", Rubber Chem. Technol., 55, 762 (1982). https://doi.org/10.5254/1.3535902
  14. N. Sombatsompop, "Analysis of Cure Characteristics on Cross-link Density and Viscoelastic Properties of Natural Rubber", Polym.-Plast. Technol. Eng., 37, 333 (1998). https://doi.org/10.1080/03602559808006932
  15. N. Sombatsompop, "Practical use of the Mooney-Rivlin Equation for Determination of Degree of Crosslinking of Swollen NR Vulcanisates", J. Sci. Soc. Thailand, 24, 199 (1998). https://doi.org/10.2306/scienceasia1513-1874.1998.24.199
  16. P. J. Flory, "Principles of Polymer Chemistry", p. 576-580, Cornell University Press, New York, 1971.
  17. A. D. Roberts, "Natural rubber science and technology", p. 519-523, Oxford University Press, Oxford and New York, 1988.
  18. L. H. Sperling, "Introduction to Physical Polymer Science" , 3rd Ed., p. 74, John Wiley & Sons, New York, 2001.

Cited by

  1. Study on the Aging Behavior of Natural Rubber/Butadiene Rubber (NR/BR) Blends Using a Parallel Spring Model vol.10, pp.6, 2018, https://doi.org/10.3390/polym10060658