DOI QR코드

DOI QR Code

CURVATURE IDENTITIES DERIVED FROM AN INTEGRAL FORMULA FOR THE FIRST CHERN NUMBER

  • Received : 2012.08.27
  • Published : 2013.07.31

Abstract

We establish an integral formula for the first Chern number of a compact almost Hermitian surface and derive curvature identities from the integral formula. Further, we provide some results as applications of the identities.

Keywords

Euh-Park-Sekigawa identity;first Chern number;almost Hermitian surface

References

  1. M. Berger, Quelques formules de variation pour une structure riemannienne, Ann. Sci. Ecole Norm. Sup. (4) 3 (1970), 285-294. https://doi.org/10.24033/asens.1194
  2. D. E. Blair and S. Ianus, Critical associated metrics on symplectic manifolds, Nonlinear problems in geometry (Mobile, Ala., 1985), 23-29, Contemp. Math., 51, Amer. Math. Soc., Providence, RI, 1986. https://doi.org/10.1090/conm/051/848929
  3. Y. Euh, J. H. Park, and K. Sekigawa, A Curvature identity on a 4-dimensional Rie-mannian manifold, Results in Mathematics, DOI: 10.1007/s00025-011-0164-3. https://doi.org/10.1007/s00025-011-0164-3
  4. Y. Euh, J. H. Park, and K. Sekigawa, A generalization of 4-dimensional Einstein manifold, to appear in Mathematica Slovaca.
  5. Y. Euh, J. H. Park, and K. Sekigawa, Critical metrics for quadratic functionals in the curvature on 4-dimensional manifolds, Differential Geom. Appl. 29 (2011), no. 5, 642-646. https://doi.org/10.1016/j.difgeo.2011.07.001
  6. P. Gilkey, J. H. Park, and K. Sekigawa, Universal curvature identities, Differential Geom. Appl. 29 (2011), no. 6, 770-778. https://doi.org/10.1016/j.difgeo.2011.08.005
  7. P. Gilkey, J. H. Park, and K. Sekigawa, Universal curvature identities II, J. Geom. Phys. 62 (2012), no. 4, 814-825. https://doi.org/10.1016/j.geomphys.2012.01.002
  8. O. Gil-Medrano and P. W. Michor, Geodesics on spaces of almost Hermitian structures, Israel J. Math. 88 (1994), no. 1-3, 319-332. https://doi.org/10.1007/BF02937517
  9. A. Gray, M. Barros, A. M. Naveira , and L. Vanhecke, The Chern numbers of holomor-phic vector bundles and formally holomorphic connections of complex vector bundles over almost complex manifolds, J. Reine Angew. Math. 314 (1980), 84-98.
  10. A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds, Ann. Mat. Pura Appl. (4) 123 (1980), 35-58. https://doi.org/10.1007/BF01796539
  11. G. M. Kuz'mina, Some generalizations of the Riemann spaces of Einstein, Math. Notes 16 (1974), 961-963; translation from Mat. Zametki 16 (1974), 619-622. https://doi.org/10.1007/BF01104264
  12. M. L. Labbi, Variational properties of the Gauss-Bonnet curvatures, Calc. Var. Partial Differential Equations 32 (2008), no. 2, 175-189. https://doi.org/10.1007/s00526-007-0135-4
  13. J. C. Lee, J. H. Park, and K. Sekigawa, Notes on critical almost Hermitian structures, Bull. Korean Math. Soc. 47 (2010), no. 1, 167-178. https://doi.org/10.4134/BKMS.2010.47.1.167
  14. P. Libermann, Classification and conformal properties of almost Hermitian structures, Differential geometry (Budapest, 1979), 371-391, Colloq. Math. Soc. Jnos Bolyai, 31, North-Holland, Amsterdam-New York, 1982.
  15. S. P. Novikov, Topological invariance of rational classes of Pontrjagin, Dokl. Akad. Nauk SSSR 163 (1965), 298-300.
  16. K. Sekigawa, On some 4-dimensional compact almost Hermitian manifolds, J. Ramanu-jan Math. Soc. 2 (1987), no. 2, 101-116.
  17. F. Tricerri and L. Vanhecke, Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), no. 2, 365-397. https://doi.org/10.1090/S0002-9947-1981-0626479-0
  18. W. T. Wu, Sur la structure presque complexe d'une variete differentiable reelle de dimension 4, C. R. Acad. Sci. Paris 227 (1948), 1076-1078.
  19. K. Yano, Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, New York, 1965.

Cited by

  1. Transplanting geometrical structures vol.31, pp.3, 2013, https://doi.org/10.1016/j.difgeo.2013.03.006
  2. Curvature identities derived from the integral formula for the first Pontrjagin number vol.31, pp.4, 2013, https://doi.org/10.1016/j.difgeo.2013.04.005

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)