• Received : 2012.08.27
  • Published : 2013.07.31


We establish an integral formula for the first Chern number of a compact almost Hermitian surface and derive curvature identities from the integral formula. Further, we provide some results as applications of the identities.


Euh-Park-Sekigawa identity;first Chern number;almost Hermitian surface


  1. M. Berger, Quelques formules de variation pour une structure riemannienne, Ann. Sci. Ecole Norm. Sup. (4) 3 (1970), 285-294.
  2. D. E. Blair and S. Ianus, Critical associated metrics on symplectic manifolds, Nonlinear problems in geometry (Mobile, Ala., 1985), 23-29, Contemp. Math., 51, Amer. Math. Soc., Providence, RI, 1986.
  3. Y. Euh, J. H. Park, and K. Sekigawa, A Curvature identity on a 4-dimensional Rie-mannian manifold, Results in Mathematics, DOI: 10.1007/s00025-011-0164-3.
  4. Y. Euh, J. H. Park, and K. Sekigawa, A generalization of 4-dimensional Einstein manifold, to appear in Mathematica Slovaca.
  5. Y. Euh, J. H. Park, and K. Sekigawa, Critical metrics for quadratic functionals in the curvature on 4-dimensional manifolds, Differential Geom. Appl. 29 (2011), no. 5, 642-646.
  6. P. Gilkey, J. H. Park, and K. Sekigawa, Universal curvature identities, Differential Geom. Appl. 29 (2011), no. 6, 770-778.
  7. P. Gilkey, J. H. Park, and K. Sekigawa, Universal curvature identities II, J. Geom. Phys. 62 (2012), no. 4, 814-825.
  8. O. Gil-Medrano and P. W. Michor, Geodesics on spaces of almost Hermitian structures, Israel J. Math. 88 (1994), no. 1-3, 319-332.
  9. A. Gray, M. Barros, A. M. Naveira , and L. Vanhecke, The Chern numbers of holomor-phic vector bundles and formally holomorphic connections of complex vector bundles over almost complex manifolds, J. Reine Angew. Math. 314 (1980), 84-98.
  10. A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds, Ann. Mat. Pura Appl. (4) 123 (1980), 35-58.
  11. G. M. Kuz'mina, Some generalizations of the Riemann spaces of Einstein, Math. Notes 16 (1974), 961-963; translation from Mat. Zametki 16 (1974), 619-622.
  12. M. L. Labbi, Variational properties of the Gauss-Bonnet curvatures, Calc. Var. Partial Differential Equations 32 (2008), no. 2, 175-189.
  13. J. C. Lee, J. H. Park, and K. Sekigawa, Notes on critical almost Hermitian structures, Bull. Korean Math. Soc. 47 (2010), no. 1, 167-178.
  14. P. Libermann, Classification and conformal properties of almost Hermitian structures, Differential geometry (Budapest, 1979), 371-391, Colloq. Math. Soc. Jnos Bolyai, 31, North-Holland, Amsterdam-New York, 1982.
  15. S. P. Novikov, Topological invariance of rational classes of Pontrjagin, Dokl. Akad. Nauk SSSR 163 (1965), 298-300.
  16. K. Sekigawa, On some 4-dimensional compact almost Hermitian manifolds, J. Ramanu-jan Math. Soc. 2 (1987), no. 2, 101-116.
  17. F. Tricerri and L. Vanhecke, Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), no. 2, 365-397.
  18. W. T. Wu, Sur la structure presque complexe d'une variete differentiable reelle de dimension 4, C. R. Acad. Sci. Paris 227 (1948), 1076-1078.
  19. K. Yano, Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, New York, 1965.

Cited by

  1. Transplanting geometrical structures vol.31, pp.3, 2013,
  2. Curvature identities derived from the integral formula for the first Pontrjagin number vol.31, pp.4, 2013,


Supported by : National Research Foundation of Korea (NRF)