• Received : 2012.09.05
  • Published : 2013.07.31


Wulan and Zhu [16] have characterized the weighted Bergman space in the setting of the unit ball of $C^n$ in terms of Lipschitz type conditions in three different metrics. In this paper, we study characterizations of the harmonic Bergman space on the upper half-space in $R^n$. Furthermore, we extend harmonic analogues in the setting of the unit ball to the full range 0 < p < ${\infty}$. In addition, we provide the application of characterizations to showing the boundedness of a mapping defined by a difference quotient of harmonic function.


weighted harmonic Bergman spaces;unit ball;upper half-space


  1. S. Axler, P. Bourdon, and W. Ramey, Harmonic Function Theory, Springer-Verlag, New York, 1992.
  2. B. R. Choe, H. Koo, and Y. J. Lee, Positive Schatten class Toeplitz operators on the ball, Studia Math. 189 (2008), no. 1, 65-90.
  3. B. R. Choe and K. Nam, Berezin transform and Toeplitz operators on harmonic Bergman spaces, J. Funct. Anal. 257 (2009), no. 10, 3135-3166.
  4. B. R. Choe and K. Nam, Double integral characterizations of harmonic Bergman spaces, J. Math. Anal. Appl. 379 (2011), no. 2, 889-909.
  5. B. R. Choe and H. Yi, Representations and interpolations of harmonic Bergman functions on half spaces, Nagoya Math. J. 151 (1998), 51-89.
  6. R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in Lp, Representation theorems for Hardy spaces, pp. 11-66, Asterisque, 77, Soc. Math. France, Paris, 1980.
  7. G. H. Hardy and J. E. Littlewood, Some properties of conjugate functions, J. Reine Angew. Math. 167 (1932), 405-423.
  8. H. Koo, K. Nam, and H. Yi, Weighted harmonic Bergman functions on half-spaces, J. Korean Math. Soc. 42 (2005), no. 5, 975-1002.
  9. S. Li, H. Wulan, R. Zhao, and K. Zhu, A characterization of Bergman spaces on the unit ball of Cn, Glasgow Math. J. 51 (2009), 315-330.
  10. S. Li, H. Wulan, and K. Zhu, A characterization of Bergman spaces on the unit ball of Cn. II, Canad. Math. Bull. 55 (2012), no. 1, 146-152.
  11. K. Nam, K. Na, and E. S. Choi, Note on characterizations of the harmonic Bergman space, Spectral theory, mathematical system theory, evolution equations, differential and difference equations, 491-496, Oper. Theory Adv. Appl., 221, Birkhuser/Springer Basel AG, Basel, 2012.
  12. K. Nam and H. Yi, Harmonic conjugates of weighted harmonic Bergman functions on half-spaces, Commun. Korean Math. Soc. 18 (2003), no. 3, 449-457.
  13. M. Pavlovic, Hardy-Stein type characterization of harmonic Bergman spaces, Potential Anal. 32 (2010), no. 1, 1-15.
  14. M. Pavlovic, On subharmonic behavior and oscilation of functions on balls in Rn, Publ. Inst. Math. (Beograd) (N.S.) 55(69) (1994), 18-22.
  15. W. Ramey and H. Yi, Harmonic Bergman functions on half-spaces, Trans. Amer. Math. Soc. 348 (1996), no. 2, 633-660.
  16. H. Wulan and K. Zhu, Lipschitz type characterizations for Bergman spaces, Canad. Math. Bull. 52 (2009), no. 4, 613-626.

Cited by

  1. New Characterizations for the Weighted Fock Spaces pp.1661-8262, 2018,


Supported by : NRF