DOI QR코드

DOI QR Code

LIPSCHITZ TYPE CHARACTERIZATIONS OF HARMONIC BERGMAN SPACES

  • Received : 2012.09.05
  • Published : 2013.07.31

Abstract

Wulan and Zhu [16] have characterized the weighted Bergman space in the setting of the unit ball of $C^n$ in terms of Lipschitz type conditions in three different metrics. In this paper, we study characterizations of the harmonic Bergman space on the upper half-space in $R^n$. Furthermore, we extend harmonic analogues in the setting of the unit ball to the full range 0 < p < ${\infty}$. In addition, we provide the application of characterizations to showing the boundedness of a mapping defined by a difference quotient of harmonic function.

Keywords

weighted harmonic Bergman spaces;unit ball;upper half-space

References

  1. S. Axler, P. Bourdon, and W. Ramey, Harmonic Function Theory, Springer-Verlag, New York, 1992.
  2. B. R. Choe, H. Koo, and Y. J. Lee, Positive Schatten class Toeplitz operators on the ball, Studia Math. 189 (2008), no. 1, 65-90. https://doi.org/10.4064/sm189-1-6
  3. B. R. Choe and K. Nam, Berezin transform and Toeplitz operators on harmonic Bergman spaces, J. Funct. Anal. 257 (2009), no. 10, 3135-3166. https://doi.org/10.1016/j.jfa.2009.08.006
  4. B. R. Choe and K. Nam, Double integral characterizations of harmonic Bergman spaces, J. Math. Anal. Appl. 379 (2011), no. 2, 889-909. https://doi.org/10.1016/j.jmaa.2011.02.024
  5. B. R. Choe and H. Yi, Representations and interpolations of harmonic Bergman functions on half spaces, Nagoya Math. J. 151 (1998), 51-89. https://doi.org/10.1017/S0027763000025174
  6. R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in Lp, Representation theorems for Hardy spaces, pp. 11-66, Asterisque, 77, Soc. Math. France, Paris, 1980.
  7. G. H. Hardy and J. E. Littlewood, Some properties of conjugate functions, J. Reine Angew. Math. 167 (1932), 405-423.
  8. H. Koo, K. Nam, and H. Yi, Weighted harmonic Bergman functions on half-spaces, J. Korean Math. Soc. 42 (2005), no. 5, 975-1002. https://doi.org/10.4134/JKMS.2005.42.5.975
  9. S. Li, H. Wulan, R. Zhao, and K. Zhu, A characterization of Bergman spaces on the unit ball of Cn, Glasgow Math. J. 51 (2009), 315-330. https://doi.org/10.1017/S0017089509004996
  10. S. Li, H. Wulan, and K. Zhu, A characterization of Bergman spaces on the unit ball of Cn. II, Canad. Math. Bull. 55 (2012), no. 1, 146-152. https://doi.org/10.4153/CMB-2011-047-6
  11. K. Nam, K. Na, and E. S. Choi, Note on characterizations of the harmonic Bergman space, Spectral theory, mathematical system theory, evolution equations, differential and difference equations, 491-496, Oper. Theory Adv. Appl., 221, Birkhuser/Springer Basel AG, Basel, 2012.
  12. K. Nam and H. Yi, Harmonic conjugates of weighted harmonic Bergman functions on half-spaces, Commun. Korean Math. Soc. 18 (2003), no. 3, 449-457. https://doi.org/10.4134/CKMS.2003.18.3.449
  13. M. Pavlovic, Hardy-Stein type characterization of harmonic Bergman spaces, Potential Anal. 32 (2010), no. 1, 1-15. https://doi.org/10.1007/s11118-009-9140-x
  14. M. Pavlovic, On subharmonic behavior and oscilation of functions on balls in Rn, Publ. Inst. Math. (Beograd) (N.S.) 55(69) (1994), 18-22.
  15. W. Ramey and H. Yi, Harmonic Bergman functions on half-spaces, Trans. Amer. Math. Soc. 348 (1996), no. 2, 633-660. https://doi.org/10.1090/S0002-9947-96-01383-9
  16. H. Wulan and K. Zhu, Lipschitz type characterizations for Bergman spaces, Canad. Math. Bull. 52 (2009), no. 4, 613-626. https://doi.org/10.4153/CMB-2009-060-6

Cited by

  1. New Characterizations for the Weighted Fock Spaces pp.1661-8262, 2018, https://doi.org/10.1007/s11785-018-0850-1

Acknowledgement

Supported by : NRF