DOI QR코드

DOI QR Code

Method-Free Permutation Predictor Hypothesis Tests in Sufficient Dimension Reduction

  • Lee, Kyungjin (Department of Statistics, Ewha Womans University) ;
  • Oh, Suji (Department of Statistics, Ewha Womans University) ;
  • Yoo, Jae Keun (Department of Statistics, Ewha Womans University)
  • Received : 2013.04.05
  • Accepted : 2013.07.08
  • Published : 2013.07.31

Abstract

In this paper, we propose method-free permutation predictor hypothesis tests in the context of sufficient dimension reduction. Different from an existing method-free bootstrap approach, predictor hypotheses are evaluated based on p-values; therefore, usual statistical practitioners should have a potential preference. Numerical studies validate the developed theories, and real data application is provided.

Acknowledgement

Supported by : National Research Foundation of Korea (KRF)

References

  1. Cook, R. D. (1998a). Principal Hessian directions revisited, Journal of the American Statistical Association, 93, 84-100. https://doi.org/10.1080/01621459.1998.10474090
  2. Cook, R. D. (1998b). Regression Graphics, Wiley, New York.
  3. Cook, R. D. (2004). Testing predictor contributions in sufficient dimension reduction, Annals of Statistics, 32, 1062-1092. https://doi.org/10.1214/009053604000000292
  4. Cook, R. D. and Li, B. (2002). Dimension reduction for the conditional mean, Annals of Statistics, 30, 455-474. https://doi.org/10.1214/aos/1021379861
  5. Cook, R. D. andWeisberg, S. (1991). Discussion of sliced inverse regression for dimension reduction by K.C. Li, Journal of the American Statistical Association, 86, 328-332.
  6. Hotelling, H. (1936). Relations between two sets of variates, Biometrika, 28, 321-377. https://doi.org/10.1093/biomet/28.3-4.321
  7. Li, K. C. (1991). Sliced inverse regression for dimension reduction, Journal of the American Statistical Association, 86, 326-342.
  8. Li, K. C. (1992). On principal Hessian directions for data visualization and dimension reduction: Another application of Stein's lemma, Journal of the American Statistical Association, 87, 1025-1039. https://doi.org/10.1080/01621459.1992.10476258
  9. Shao, Y., Cook, R. D. and Weisberg, S. (2007). Marginal tests of sliced average variance estimation, Biometrika, 94, 285-296. https://doi.org/10.1093/biomet/asm021
  10. Ye, Z. andWeiss R. E. (2003). Using the bootstrap to select one of a new class of dimension reduction methods, Journal of the American Statistical Association, 98, 968-979. https://doi.org/10.1198/016214503000000927
  11. Yin, X. and Cook, R. D. (2002). Dimension reduction for the conditional kth moment in regression. Journal of Royal Statistical Society, Series B, 64, 159-175. https://doi.org/10.1111/1467-9868.00330
  12. Yoo, J. K. (2011). Unified predictor hypothesis tests in sufficient dimension reduction: Bootstrap approach, Journal of the Korean Statistical Society, 40, 217-222 https://doi.org/10.1016/j.jkss.2010.09.006