DOI QR코드

DOI QR Code

Synthesis and Biological Evaluation of 2-Amino-4H-pyran-3,4,5-tricarboxylate Salt Derivatives

  • Akbari, Ali ;
  • Azami-Sardooei, Zabihollah ;
  • Hosseini-Nia, Asghar
  • Received : 2013.03.13
  • Accepted : 2013.06.02
  • Published : 2013.08.20

Abstract

A novel and simple method for the synthesis of 2-amino-4H-pyran-3,4,5-tricarboxylate derivative and the evaluation of their antibacterial activity against Pseudomonas syringae, Xanthomonas citi and Pectobacterium carotovorum are reported. The structure of the isolated compounds has been determined by means of $^1H/^{13}C$ NMR and FT-IR Spectroscopy. The reaction of alkyl isocyanides with acetylenic esters in the presence of dimethyl acetone-1,3-dicarboxylate in the present of $BF_3.SiO_2$ at ambient temperature. Some of the compound showed significant inhibition to growth of bacteria.

Keywords

Biological evaluation;Antibacterial activity;4H-Pyran-3;4;5-tricarboxylate;$BF_3.SiO_2$

References

  1. Mirjalili, B. F.; Bamoniri, A.; Akbari, A. Nano-$BF_{3}{\cdot}SiO_{2}$: a Reusable and Eco-friendly Catalyst for Synthesis of Quinoxalines. Chem. Heterocycl. Comp. 2011, 47(4), 487. https://doi.org/10.1007/s10593-011-0785-1
  2. Rho, H. S.; Baek, H. S.; You, J. W.; Kim, S.; Lee, J. Y.; Kim, D. H.; Chang, I. S. Bull. Korean Chem. Soc. 2007, 28(3), 471. https://doi.org/10.5012/bkcs.2007.28.3.471
  3. Li, D.-H.; Cai, S.-X.; Tian, L.; Lin, Z.-J.; Zhu, T.-J.; Fang, Y.-C.; Liu, P.-P.; Gu, Q.-Q.; Zhu, W.-M. Arch. Pharm. Res. 2007, 30(9), 1051. https://doi.org/10.1007/BF02980236
  4. Wang, T.-S.; Wang, S.-Q.; Xiao, D.-L. J. Med. Plants Res. 2012, 6(26), 4259.
  5. Larget, R.; Lockhart, B.; Renard, P.; Largeron, M. Biorg. Med. Chem. Lett. 2000, 10, 835. https://doi.org/10.1016/S0960-894X(00)00110-4
  6. Groweiss, A.; Cardellins, J. H.; Boyd, M. R. J. Nat. Prod. 2000, 63, 1537. https://doi.org/10.1021/np000175m
  7. Deng, Y.; Lee, J. P.; Ramamonjy, M. T.; Synder, J. K.; Des Etages, S. A.; Kanada, D.; Synder, M. P.; Turner, C. J. J. Nat. Prod. 2000, 63, 1082. https://doi.org/10.1021/np000054m
  8. Khan, I. A.; Avery, M. A.; Burandt, C. L.; Goins, D. K.; Mikell, J. R.; Nash, T. E.; Azadega, A.; Walker, L. A. J. Nat. Prod. 2000, 63, 1414. https://doi.org/10.1021/np000010d
  9. Mori, K.; Audran, G.; Monti, H. Synlett 1998, 259.
  10. Pietta, P. J. J. Nat. Prod. 2000, 63, 1035. https://doi.org/10.1021/np9904509
  11. Nasiri, F.; Nazem, F.; Pourdavaie, K. Mol. Divers. 2007, 11, 101. https://doi.org/10.1007/s11030-007-9064-6
  12. Park, E.-J.; Gray, P. M.; Oh, S.-W.; Kronenberg, J.; Kang, D.-H. J. Food. Science. 2008, 73(6), M278. https://doi.org/10.1111/j.1750-3841.2008.00793.x
  13. Toth, I. K.; Bell, K. S.; Holeva, M. C., Birch, P. R. J. Molecular Plant Pathology 2003, 4(1), 17. https://doi.org/10.1046/j.1364-3703.2003.00149.x
  14. Yang, J. W.; Yi, H.-S.; Kim, H.; Lee, B.; Lee, S.; Ghim, S.-Y.; Ryu, C.-M. J. Ecology. 2011, 99(1), 46. https://doi.org/10.1111/j.1365-2745.2010.01756.x
  15. Boch, J.; Bonas, U. Annual Review of Phytopathology 2010, 48, 419. https://doi.org/10.1146/annurev-phyto-080508-081936
  16. Ivanovic, Z.; Zivkovic, S.; Starovic, M.; Josic, D.; Stankovic, S.; Gavrilovic, V. Arch. Biol. Sci. 2009, 61(4), 863. https://doi.org/10.2298/ABS0904863I
  17. Rodrigo, J. Sci. Hortic. 2000, 85(3), 155. https://doi.org/10.1016/S0304-4238(99)00150-8
  18. Lemriss, S.; Marquet, B.; Ginestet, H.; Lefeuvre, L.; Fassouane, A.; Boiron, P. J. Mycol. Med. 2003, 13, 189.
  19. Wilson, K.; Clark, J. H. Synthesis of a Novel Supported Solid Acid $BF_{3}$ Catalyst. Chem. Commun. 1998, 2135.
  20. Klapotke, T. M.; Mc Monagle, F.; Spence, R. R.; Winfield, J. M. $\gamma$-Alumina-Supported Boron Trifluoride: Catalysis, Radiotracer Studies and Computations. J. Fluorine. Chem. 2006, 127, 1446. https://doi.org/10.1016/j.jfluchem.2006.05.010
  21. Sadegi, B.; Mirjalili, B. F.; Hashemi, M. M. $BF_{3}{\cdot}SiO_{2}$: An Efficient Reagent System for the One-Pot Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles. Tetrahedron Lett. 2008, 49, 2575. https://doi.org/10.1016/j.tetlet.2008.02.100
  22. Mirjalili, B. F.; Bamoniri, A.; Akbari, A. $BF_{3}{\cdot}SiO_{2}$: An Efficient Alternative for the Synthesis of 14-Aryl or Alkyl-14H-dibenzo[a,j]xanthenes. Tetrahedron Lett. 2008, 49, 6454. https://doi.org/10.1016/j.tetlet.2008.08.101
  23. Boodhoo, K. V. K.; Dunk, W. A. E.; Vicevic, M.; Jachuck, R. J.; Sage, V.; Macquarrie, D. J.; Clark, J. H. Classical Cationic Polymerisation of Styrene in a Spinning Disc Reactor Using Silica Supported $BF_{3$ Catalyst. J. Appl. Polym. Sci. 2006, 101(1), 8. https://doi.org/10.1002/app.22758
  24. Dindulkar, S. D.; Parthiban P.; Y. T. Jeong. $BF_{3}{\cdot}SiO_{2}$ is a Simple and Efficient Lewis Acid Catalyst for the One-Pot Synthesis of Polyfunctionalized Piperidin-4-ones. Monatsh. Chem. 2012, 143, 113. https://doi.org/10.1007/s00706-011-0576-5
  25. Reddy, M. V.; Dindulkar, S. D.; Jeong, Y. T. $BF_{3}{\cdot}SiO_{2}$- Catalyzed One-Pot Synthesis of $\alpha$-Aminophosphonates in Ionic Liquid and Neat Conditions. Tetrahedron Lett. 2011, 52, 4764. https://doi.org/10.1016/j.tetlet.2011.07.027
  26. Sadegi, B.; Mirjalili, B. F.; Hashememi, M. M. $BF_{3}{\cdot}SiO_{2}$: An Efficient Heterogeneous Alternative for Regio-Chemo and Stereoselective Claisen-schmidt Condensation. J. Iran. Chem. Soc. 2008, 5(4), 694. https://doi.org/10.1007/BF03246151
  27. Mirjalili, B. F.; Bamoniri, A.; Akbari, A. One-pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones (thiones) Promoted by Nano-$BF_{3}{\cdot}SiO_{2}$. J. Iran. Chem. Soc. 2011, 8, 135. https://doi.org/10.1007/BF03254290
  28. Rahman, A.; Choudhary, M. I.; Thomsen, W. J. Bioassay Techniques for Drug Development; Harwood Academic Publishers: Amsterdam, 2001; p 14.

Cited by

  1. Synthesis of mesoporous Ca-MCM catalysts and their use in suitable multicomponent synthesis of polyfunctionalized pyrans vol.43, pp.4, 2017, https://doi.org/10.1007/s11164-016-2749-7