DOI QR코드

DOI QR Code

One Pot Synthesis of Bioactive Novel Cyanopyridones

  • Khokhani, Kamlesh ;
  • Khatri, Taslimahemad ;
  • Patel, Praful
  • Received : 2013.04.09
  • Accepted : 2013.07.15
  • Published : 2013.08.20

Abstract

Cyanopyridone was prepared by the condensation of cyanoacetamide, substituted arylaldehydes and malononitrile in presence of pipyridine. The structure of the synthesized compound CP 1-20 was assigned on the basis of elemental analysis, IR, $^1H$-NMR and mass spectroscopy. These compounds were also screened for antimicrobial activity. The Minimum Inhibitory Concentration (MIC) of all the synthesized compounds was compared with standard drugs.

Keywords

Cyanopyrimidones;Cyanoacetamide;Antimicrobial activity;Malononitrile;Pipyridine

References

  1. National Committee for Clinical and Laboratory Standards (NCCLS). Method for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically Approved Standard, 4th ed. NCCLS, Villanova, Italy. 1997, Document M 100-S7. S100-S157.
  2. Isenberg, D. H. Essential Procedure for Clinical Microbiology; American Society for Microbiology: Washington, 1998.
  3. Zgoda, J. R.; Porter, J. R. Pharm. Biol. 2001, 39, 221-25. https://doi.org/10.1076/phbi.39.3.221.5934
  4. Robert, N.; Verrier, C.; Hoarau, C.; Celanire, S.; Marsais, F. Solid-phase Synthesis of 3-Hydroxy-2-methylenealkanenitriles Using Polymer-Supported $\alpha$-Selenopropionitrile. ARKIVOC 2008, 7, 92.
  5. Choi, W.; Houpis, I. N.; Charchil, H. R. O.; Molina, A.; Lynch, J. E.; Volante, R. P.; Reider, P. J.; King, A. O. Tetrahedron 1995, 36, 4571. https://doi.org/10.1016/0040-4039(95)00850-C
  6. Bhupathy, M.; Conlon, D. A.; Wells, K. M.; Wells, M.; Nolson, J. R.; Reider, P. J.; Rossen, K.; Sager, J. W.; Volante, R. P. Cyanoacetanilides Intermediates in Heterocyclic Synthesis. Part 1: A Facile Synthesis of Polysubstituted and Condensed Pyridones J. Heterocyclic Chem. 1995, 32, 1283. https://doi.org/10.1002/jhet.5570320431
  7. Kappe, O. C.; Kappe, T. Synthesis of substituted 3-pyridine carbo nitriles with potential biological activity Monatshefte fur Chemie 1989, 120, 1095. https://doi.org/10.1007/BF00809291
  8. Saiki, A. Y. C.; Shen, L. L.; Chen, C. M.; Baranowski, J.; Lerner, C. G. DNA Cleavage Activities of Staphylococcus aureus Gyrase and Topoisomerase IV Stimulated by Quinolones and 2-Pyridones Antimicrob. Agents Chemother. 1999, 43, 1574.
  9. Brickner, S. Regio and Selective Synthesis of 4,6-Disubstituted-2-pyridones. Chem. Ind. 1997, 131.
  10. Cheney, I. W.; Yan, S.; Appleby, T.; Walker, H.; Vo, T.; Yao, N.; Hamatake, R.; Hong, Z.; Wu, J. Z. Bioorg. Med. Chem. Lett. 2007, 17, 1679. https://doi.org/10.1016/j.bmcl.2006.12.086
  11. Wendt, M. D.; et al. Bioorg. Med. Chem. Lett. 2007, 17, 3122. https://doi.org/10.1016/j.bmcl.2007.03.042
  12. Hardie, D. G. Endocrinology 2003, 144, 5179. https://doi.org/10.1210/en.2003-0982
  13. Hardie, D. G.; Scott, J. W.; Pan, D. A.; Hudson, E. R. FEBS Lett. 2003, 546, 113. https://doi.org/10.1016/S0014-5793(03)00560-X
  14. Kahn, B. B.; Alquier, T.; Carling, D.; Hardie, D. G. Cell Metab. 2005, 1, 15. https://doi.org/10.1016/j.cmet.2004.12.003
  15. Hawley, S. A.; Boudeau, J.; Reid, J. L.; Mustard, K. J.; Udd, L.; Makela, T. P.; Alessi, D. R.; Hardie, D. G. J. Biol. 2003, 2, 28. https://doi.org/10.1186/1475-4924-2-28
  16. Li, Q.; Mitscher, L. A.; Shen, L. L. The 2-Pyridone Antibacterial Agents: Bacterial Topoisomerase Inhibitors Med. Res. Rev. 2000, 20, 231. https://doi.org/10.1002/1098-1128(200007)20:4<231::AID-MED1>3.0.CO;2-N
  17. Gupta, A, K.; Plott, T. Ciclopirox: A Broad-Spectrum Antifungal with Antibacterial and Anti-inflammatory Properties. Int. J. Dermatol. 2004, 43, 3. https://doi.org/10.1111/j.1461-1244.2004.02380.x
  18. Collins, I.; et al. 3-Heteroaryl-2-pyridones: Benzodiazepine Site Ligands with Functional Selectivity for $\alpha2$/$\alpha3$-Subtypes of Human GABAA Receptor-Ion Channels J. Med. Chem. 2002, 45, 1887. https://doi.org/10.1021/jm0110789
  19. Sollogoub, M.; Fox, K. R.; Powers, V. E. C.; Brown, T. First Synthesis of 1-Deazacytidine, the C-nucleoside Analogue of Cytidine Tetrahedron Lett. 2002, 43, 3121. https://doi.org/10.1016/S0040-4039(02)00481-1
  20. Parsons, S.; Winpenny, R. E. P. Structural Chemistry of Pyridonate Complexes of Late 3d-Metals Acc. Chem. Res. 1997, 30, 89. https://doi.org/10.1021/ar960162t
  21. Murray, T.; Zimmerman, S. 7-Amido-1,8-naphthyridines as Hydrogen Bonding Units for the Complexation of Guanine Derivatives: The Role of 2-Alkoxyl Groups in Decreasing Binding Affinity Tetrahedron Lett. 1995, 36, 7627. https://doi.org/10.1016/0040-4039(95)01586-7
  22. Werbitzky, O.; Studer, P. Process for the Production of 2-Chloro-5-chloromethyl-pyridine. U.S. Patent 6,022,974, Feb 8, 2008.
  23. Murata, T.; Shimizu, K.; Narita, M.; Manganiello, V.; Tagawa, T. Characterization of Phosphodiesterase 3 in Human Malignant Melanoma Cell Line Anticancer Res. 2000, 22, 3171.
  24. Ahmed Ali, F.; Samir, B.; Ramy, R.; Hassan Ali, E. Cyanoacetamide Derivatives as Synthons in Heterocyclic Synthesis Turk. J. Chem. 2008, 32, 259.

Cited by

  1. One Pot Synthesis of Novel Cyanopyridones as an Intermediate of Bioactive Pyrido[2,3-d]Pyrimidines vol.58, pp.4, 2014, https://doi.org/10.5012/jkcs.2014.58.4.366
  2. receptor agonists pp.1532-2432, 2019, https://doi.org/10.1080/00397911.2019.1575422