DOI QR코드

DOI QR Code

The Spectrum of the Opertator D(r, 0, 0, s) over the Sequence Spaces c0 and c

Tripathy, Binod Chandra;Paul, Avinoy

  • Received : 2011.04.05
  • Accepted : 2011.09.23
  • Published : 2013.06.23

Abstract

In this paper we have examined the spectra of the operator D($r$, 0, 0, $s$) on sequence spaces $c_0$ and $c$.

Keywords

Spectra;resolvent operator;point spectrum;continuous spectrum;residual spectrum

References

  1. B. C. Tripathy and A. Esi, A new type of difference sequence spaces, Inter. Jour. Sci. Tech., 1(1)(2006), 11-14.
  2. B. C. Tripathy and S. Mahanta, On a class of generalized lacunary difference sequence spaces defined by Orlicz function, Acta Math. Appl. Sin.(Eng Ser.), 20(2)(2004), 231-238. https://doi.org/10.1007/s10255-004-0163-1
  3. B. C. Tripathy and S. Mahanta, On a class of vector valued sequences associated with multiplier sequences, Acta Math. Appl. Sin.(Eng Ser.), 20(3)(2004),487-494. https://doi.org/10.1007/s10255-004-0186-7
  4. B. C. Tripathy and B. Sarma, Statistically convergent difference double sequence spaces, Acta Math. Appl. Sin.(Eng Ser.), 24(5)(2008), 737-742. https://doi.org/10.1007/s10114-007-6648-0
  5. B. C. Tripathy and B. Sarma, Vector valued double sequence spaces defined by Orlicz function, Math. Slov., 59(6)(2009), 767-776. https://doi.org/10.2478/s12175-009-0162-z
  6. Y. Altin, M. Et and B. C. Tripathy, The sequence space ${\mid}\overline{N}_{p}{\mid}$(M, r, q, s) on seminormed spaces, Appl. Math. Comput., 154(2004), 423-430.
  7. P. Chandra and B. C. Tripathy, On generalized Kothe-Toeplitz duals of some sequence spaces, Indian Jour. Pure Appl. Math., 33(8)(2002), 1301-1306.
  8. S. Goldberg, Unbounded Linear operators, Dover publications Inc. New York, 1985.
  9. H. Kizmaz, On Certain Sequence Spaces, Canad. Math. Bull., 24(1981), 169-176. https://doi.org/10.4153/CMB-1981-027-5
  10. J. I. Okutoyi, On the spectrum of $C_{1}$ as an operator on $bv_{0}$, Jour. Austral. Math. Soc., Series (A), 48(1990), 79-86. https://doi.org/10.1017/S1446788700035205
  11. B. Altay and F. Basar, On the fine spectra of the difference operator $\Delta$ on $c_{0}$ and c, Inform. Sci., 168(2004), 217-224. https://doi.org/10.1016/j.ins.2004.02.007
  12. B. Altay and F. Basar, On the fine spectra of the generalized difference operator B(r, s) over the sequence spaces $c_{0}$ and c, Internat. Jour. Math. Sci., 18(2005), 3005-3013.
  13. D. Rath and B. C. Tripathy, Matrix maps on sequence spaces associated with sets of integers, Indian Jour. Pure Appl. Math., 27(2)(1996), 197-206.
  14. B. C. Tripathy, Matrix transformations between some classes of sequences, Jour. Math. Analysis Appl., 206(1997), 448-450. https://doi.org/10.1006/jmaa.1997.5236
  15. B. C. Tripathy, Y. Altin and M. Et, Generalized difference sequences spaces on seminormed spaces defined by Orlicz functions, Math. Slov., 58(3)(2008), 315-324. https://doi.org/10.2478/s12175-008-0077-0
  16. B. C. Tripathy and A. Baruah, New type of difference sequence spaces of fuzzy real numbers, Math. Model. Anal., 14(3)(2009), 391-397. https://doi.org/10.3846/1392-6292.2009.14.391-397
  17. B. C. Tripathy and A. Baruah, Norlund and Riesz mean of sequences of fuzzy real numbers, Appl. Math. Lett., 23(2010), 651-655. https://doi.org/10.1016/j.aml.2010.02.006
  18. B. C. Tripathy and A. Baruah, Lacunary statistically convergent and lacunary strongly convergent generalized difference sequences of fuzzy real numbers, Kyungpook Mathematical Journal, 50(2010), 565-574. https://doi.org/10.5666/KMJ.2010.50.4.565
  19. B. C. Tripathy and S. Borgogain, The sequence space $m(M, {\phi},{\Delta_{m}^{n}}, p)^{F}$ , Math. Model. Anal., 13(4)(2008), 577-586. https://doi.org/10.3846/1392-6292.2008.13.577-586
  20. B. C. Tripathy, B. Choudhary and B. Sarma, On some new type generalized difference sequence spaces, Kyungpook Mathematical Journal, 48(4)(2008), 613-622. https://doi.org/10.5666/KMJ.2008.48.4.613
  21. B. C. Tripathy and H. Dutta, On some new paranormed difference sequence spaces defined by Orlicz functions, Kyungpook Mathematical Journal, 50(2010), 59-69. https://doi.org/10.5666/KMJ.2010.50.1.059
  22. B. Altay and F. Basar, The fine spectrum of the matrix domain of the difference operator $\Delta$ on the sequence space $\ell_{p}$(0 < p < 1), Commu. Math. Anal., 2(2)(2007), 1-11.
  23. D. Rath and B. C. Tripathy, A note on spectra of operator Schur matrices and the maximal group of the algebra of triangular conservative matrices, Indian Jour. Pure Appl. Math., 23(6)(1992), 411-417.
  24. B. C. Tripathy and P. Chandra, On some generalized difference paranormed sequence spaces associated with multiplier sequences defined by modulus function, Anal. Theory Appl., 27(1)(2011), 21-27. https://doi.org/10.1007/s10496-011-0021-y
  25. B. C. Tripathy and M. Sen, Characterization of some matrix classes involving paranormed sequence spaces, Tamkang Jour. Math., 37(2)(2006), 155-162.

Cited by

  1. On the spectrum and fine spectrum of the upper triangular matrix $$U\left( r_1 ,r_2 ;s_1 ,s_2 \right) $$ U r 1 , r 2 ; s 1 , s 2 over the sequence space $$c_0 $$ c 0 vol.28, pp.5-6, 2017, https://doi.org/10.1007/s13370-017-0486-8
  2. The spectrum of the operator $$ D( r,0, s,0,t)$$ D ( r , 0 , s , 0 , t ) over the sequence spaces $$\ell _{p}$$ ℓ p and $$bv_{p}$$ b v p vol.26, pp.5-6, 2015, https://doi.org/10.1007/s13370-014-0268-5
  3. On spectral properties of a new operator over sequence spaces c and c0 vol.34, pp.5, 2014, https://doi.org/10.1016/S0252-9602(14)60098-9

Acknowledgement

Supported by : Council of Scientific and Industrial Research, India