Effect of Slag Particle Size and Volume Fraction on Mechanical Properties of Slag Reinforced Composite

슬래그 입자의 크기 및 체적비에 따른 슬래그 입자강화 복합재료의 기계적 특성 연구

  • 남지훈 (연세대학교 기계공학과 기계공학 전공 대학원) ;
  • 전흥재 (연세대학교 기계공학과) ;
  • 홍익표 (공주대학교 전자공학과)
  • Received : 2013.05.11
  • Accepted : 2013.08.14
  • Published : 2013.09.01


This study demonstrated that a slag, an industrial solid waste, can be used as a structural reinforcement. The mechanical properties(tensile strength and Elastic modulus) of slag reinforced composite(SRC) was investigated as functions of slag particle size (8~12 ${\mu}m$ and 12~16 ${\mu}m$) and volume fraction (0-40 vol.%). In order to investigate the interface and a degree of particle dispersion which have an effect on mechanical properties, optical microscopic images were taken. The results of tensile tests showed that the tensile strength decreased with an increase in slag volume fraction and particle size. The elastic modulus increased with an increase in slag volume fraction and particle size except for 30 vol.% SRC. The tensile strength decreased with an increase in slag particle size. The microscopic picture showed SRC has fine degree of particle dispersion at low slag volume fraction. SRC has a good interface at every volume fraction. However particle cluster was incorporated with an increase in slag volume fraction.


  1. Choi, S.W., Kim, V., Chang, W.S., and Kim, E.T., "The Present Situation of Production and Utilization of Steel Slag in Korea and Other Contries," Journal of the Korea Concrete Institute, Vol. 19, No. 6, 2007, pp. 28-33.
  2. Francis, A.A., "Conversion of Blast Furnace Slag into New Glass-ceramic Material," Journal of the European Ceramic Society, Vol. 24, No. 9, 2004, pp. 2819-2824.
  3. Fu, S.Y., Feng, X.Q., Lauke, B., and Mai, Y.W., "Effects of Particle Size, Particle/Matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate-polymer composites," Journal of Composite Part B, Vol. 39, No. 6, 2008, pp. 933-961.
  4. Einstein, A., "Uever die von der molekularkinetischen fluessigkeiten suspendierten teilchen," Annalen Der Physic, Vol. 332, No. 8, 1905, pp. 549-560.
  5. Einstein, A., Investigation on Theory of Brownian Movement, Dover, New York, USA, 1956.
  6. Radford, K.C., "The Mechanical Property of an Epoxy Resin with a Second Phase Dispersion," Journal of Master Science, Vol. 6, No. 10, 1971, pp. 1286-1291.
  7. Spanoudakis, J., and Young, R.J., "Crack Propagation in a Glass Particle-Filled Epoxy-Resin," Journal of Master Science, Vol. 19, No. 2, 1984, pp. 473-486.
  8. Nakamura, Y., Yamaguchi, M., Okubo, M., and Matsumoto, T., "Effect of Particle Size on Mechanical Properties of Epoxy Resin Filled with Angular-Shaped Silica," Journal of Applied Polymer Science, Vol. 44, No. 1, 1992, pp. 151-158.
  9. Xie, X.L., Zhou, X.P., and Mai, Y.W., "Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review," Journal of Materials Science and Engineering, Vol. 49, No.4, 2005, pp. 89-112.
  10. Zhang, Q., Tian, M., Wu, Y., Ling, G., and Zhang, L., "Effect of Particle Size on the Properties of $Mg(OH)_2$-Filled Rubber Composites," Journal of Applied Polymer Science, Vol. 94, No. 6, 2004, pp. 2341-2346.
  11. Lazzeri, A., Thio, Y.S., and Cohen, R.E., "Volume Strain Measurements on $CaCO_{3}$/Polypropylene Particulate Composites: The Effect of Particle Size," Journal of Applied Polymer Science, Vol. 91, No. 2, 2004, pp. 925-935.
  12. Pukanszky, B., and Voros, G., "Mechanism of Interfacial Interactions in Particulate Filled Composites," Journal of Composite Interface, Vol. 1, No. 5, 1993, pp. 411-427.
  13. Giannelis, E.P., "Polymer Layered Silicate Nanocomposites," Journal of Advanced Materials, Vol. 8, No. 1, 1996, pp. 29-35.
  14. Reynaud, E., Jouen, T., Gauthier, C., Vigier, G., and Varlet, J., "Nanofillers in Polymeric Matrix : a Study on Silica Reinforced PA6," Journal of Polymer, Vol. 42, No. 21, 2001, pp. 8759-8768.
  15. Sumita, M., Shizuma, T., Miyasaka, K., and Ishikawa, K., "Effect of Reducible Properties of Temperature, Rate of Strain, and Filler Content on the Tensile Yield Stress of Nylon 6 Composite Filled with Ultrafine Particles," Journal of Macromolecular Science, Part B: Physics, Vol. 22, No. 4, 1983, pp. 601-618.
  16. Leidner, J., and Woodhams, R.T., "Strength of Polymeric Composites Containing Spherical Fillers," Journal of Applied Polymer Science, Vol. 18. No. 6, 1974, pp. 1639-1654.