DOI QR코드

DOI QR Code

AN IMPROVEMENT OF THE HÖRMANDER-MIKHLIN MULTIPLIER CONDITIONS

Heo, Yaryong

  • Received : 2013.06.26
  • Accepted : 2013.07.10
  • Published : 2013.09.25

Abstract

We give an $L^p$ Fourier multiplier condition which implies the H$\ddot{o}$rmander-Mikhlin multiplier theorem.

Keywords

Fourier multiplier

References

  1. Sun-Yung A. Chang and Robert Fefferman, A continuous version of duality of $H^1$ with BMO on the bidisc, Ann. of Math. (2) 112(1) (1980), 179-201. https://doi.org/10.2307/1971324
  2. Anthony Carbery, George Gasper, andWalter Trebels, Radial Fourier multipliers of $L^p(R^2)$, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), no. 10, Phys. Sci., 3254-3255. https://doi.org/10.1073/pnas.81.10.3254
  3. Henry Dappa, A Marcinkiewicz criterion for $L^p$-multipliers, Pacific J. Math. 111(1) (1984), 9-21. https://doi.org/10.2140/pjm.1984.111.9
  4. Gustavo Garrigos and Andreas Seeger, Characterizations of Hankel multipliers, Math. Ann. 342(1) (2008), 31-68. https://doi.org/10.1007/s00208-008-0221-8
  5. Gustavo Garrigos and Andreas Seeger, A note on maximal operators associated with Hankel multipliers, Rev. Un. Mat. Argentina 50(2) (2009), 137-148.
  6. Lars Hormander, Estimates for translation invariant operators in $L^p$ spaces, Acta Math. 104 (1960), 93-140. https://doi.org/10.1007/BF02547187
  7. Yaryong Heo, Fedor Nazarov, and Andreas Seeger, Radial Fourier multipliers in high dimensions, Acta Math. 206(1) (2011), 55-92. https://doi.org/10.1007/s11511-011-0059-x
  8. Jaak Peetre, On spaces of Triebel-Lizorkin type, Ark. Mat. 13 (1975), 123-130. https://doi.org/10.1007/BF02386201
  9. Andreas Seeger, Remarks on singular convolution operators, Studia Math. 97(2) (1990), 91-114. https://doi.org/10.4064/sm-97-2-91-114
  10. Hans Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhauser Verlag, Basel, 1983.

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)