DOI QR코드

DOI QR Code

MORPHIC PROPERTY OF A QUOTIENT RING OVER POLYNOMIAL RING

  • Received : 2011.05.31
  • Published : 2013.09.30

Abstract

A ring R is called left morphic if $$R/Ra{\simeq_-}l(a)$$ for every $a{\in}R$. Equivalently, for every $a{\in}R$ there exists $b{\in}R$ such that $Ra=l(b)$ and $l(a)=Rb$. A ring R is called left quasi-morphic if there exist $b$ and $c$ in R such that $Ra=l(b)$ and $l(a)=Rc$ for every $a{\in}R$. A result of T.-K. Lee and Y. Zhou says that R is unit regular if and only if $$R[x]/(x^2){\simeq_-}R{\propto}R$$ is morphic. Motivated by this result, we investigate the morphic property of the ring $$S_n=^{def}R[x_1,x_2,{\cdots},x_n]/(\{x_ix_j\})$$, where $i,j{\in}\{1,2,{\cdots},n\}$. The morphic elements of $S_n$ are completely determined when R is strongly regular.

References

  1. V. Camillo, W. K. Nicholson, and Z. Wang, Left quasi-morphic rings, J. Algebra Appl. 7 (2008), no. 6, 725-733. https://doi.org/10.1142/S0219498808003089
  2. J. Chen and Y. Zhou, Morphic rings as trivial extensions, Glasg. Math. J. 47 (2005), no. 1, 139-148. https://doi.org/10.1017/S0017089504002125
  3. K. R. Goodearl, von Neumann regular rings, in: Monographs and Studies inMathematics, Pitman, Boston, Mass, London, 1979.
  4. T. Y. Lam, A First Course in Noncommutative Rings, Second ed., Grad. Texts in Math., vol. 131, Springer-Verlag, New York, 2001.
  5. T.-K. Lee and Y. Zhou, Morphic rings and unit regular rings, J. Pure Appl. Algebra 210 (2007), no. 2, 501-510. https://doi.org/10.1016/j.jpaa.2006.10.005
  6. W. K. Nicholson and E. Sanchez Campos, Rings with the dual of the isomorphism theo-rem, J. Algebra 271 (2004), no. 1, 391-406. https://doi.org/10.1016/j.jalgebra.2002.10.001
  7. W. K. Nicholson and E. Sanchez Campos, Morphic modules, Comm. Algebra 33 (2005), no. 8, 2629-2647. https://doi.org/10.1081/AGB-200064348