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NOTE ON THE GROUND STATES OF TWO-COMPONENT

BOSE-EINSTEIN CONDENSATES WITH AN INTERNAL

ATOMIC JOSEPHSON JUNCTION

Zhongxue Lü and Zuhan Liu

Abstract. In this paper, we consider two-component Bose-Einstein con-
densates with an internal atomic Josephson junction in the general case,
i.e., 0 < p <

2
(d−2)+

. We prove existence and uniqueness results for the

ground states, and obtain some properties of the ground states with large
parameters.

1. Introduction

We consider the following two-components nonlinear Schrödinger equations
[5, 8, 9, 10],
(1.1)



iψ1
t = − 1

2∆ψ
1 + |x|2ψ1 + δψ1 + (v11ψ

1|2pψ1 + v12|ψ2|p+1|ψ1|p−1ψ1) + λψ2

in Rd × R,
iψ2
t = − 1

2∆ψ
2 + |x|2ψ2 + (v12|ψ1|p+1|ψ2|p−1ψ2 + v22|ψ2|2pψ2) + λψ1

in Rd × R,

(1.2) ψ1(x, 0) = ϕ1(x), ψ2(x, 0) = ϕ2(x),

where t is time, x ∈ Rd(d = 1, 2, 3) is the Cartesian coordinate vector, ψj(x, t) :
Rn×R → C is the corresponding macroscopic wave function of the jth (j = 1, 2)
component, and ψ1

0(x), ψ
2
0(x) is the initial data. λ is the effective Rabi fre-

quency to realize the internal atomic Josephson junction by a Raman transition,
δ is the detuning constant for the Raman transition, 0 < p < 2

(d−2)+ ((d−2)+ =

+∞ when d = 1, 2, and (d − 2)+ = 1 when d ≥ 3), vij , i, j = 1, 2 are coupling
constants, v12 = v21 are the s-wave scattering lengths between the first and the
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second component (positive for repulsive interaction and negative for attrac-
tive interaction). This model has applications in many problems, especially in
Bose-Einstein condensates. It is necessary to ensure that the wave function is
properly normalized. Especially, we require

∫

Rd

[|ψ1|2 + |ψ2|2]dx = 1.

The dimensionless CGPEs (1.1) conserves the total mass or normalization,
i.e.,

N(ψ1, ψ2) := ‖ψ1‖2L2 + ‖ψ2‖2L2 = 1, t ≥ 0,

with

‖ψj‖2L2 =

∫

Rd

|ψj |2dx, t ≥ 0, j = 1, 2,

and the energy

E(ψ1, ψ2) = E0(ψ
1, ψ2) + 2λ

∫

Rd

Re(ψ1ψ2)dx,

with f and Re(f) denoting the conjugate and real part of a function f , respec-
tively, and

E0(ψ
1, ψ2) :=

∫

Rd

[
1

2
(|∇ψ1|2 + |∇ψ2|2) + |x|2(|ψ1|2 + |ψ2|2) + δ|ψ1|2]dx

+
1

p+ 1

∫

Rn

(v11|ψ1|2p+2 + v22|ψ2|2p+2 + 2v12|ψ1|p+1|ψ2|p+1)dx.

The ground state ψ1
g(x), ψ

2
g(x) of the two-component BEC with an internal

atomic Josephson junction (1.1) is defined as:
If ψ1

g(x), ψ
2
g(x) ∈ S satisfies

(1.3) Eg := E(ψ1
g(x), ψ

2
g(x)) = min

ψ1,ψ2∈S
E(ψ1(x), ψ2(x)),

where S is a nonconvex set defined as

S := {φ1(x), φ2(x) : ‖φ1‖2L2 + ‖φ2‖2L2 = 1, E(φ1(x), φ2(x)) <∞}.
It is easy to see the ground state φ1g(x), φ

2
g(x) satisfies the following Euler-

Lagrange equations,
(1.4){
µφ1 = − 1

2∆φ
1 + |x|2φ1 + δφ1 + (v11φ

1|2pφ1 + v12|φ2|p+1|φ1|p−1φ1) + λφ2,
µφ2 = − 1

2∆φ
2 + |x|2φ2 + (v12φ

1|2pφ2 + v22|φ2|p+1|φ1|p−1φ1) + λφ1, x∈Rd,

under the constraint

‖φ1‖2L2 + ‖φ2‖2L2 = 1.

In fact, the above time-independent CGPEs (1.4) can be obtained from the
CGPEs (1.1) by substituting the ansatz

ψ1(x, t) = e−iµtφ1(x), ψ2(x, t) = e−iµtφ2(x).
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The motivation to study problem (1.4) comes from many interest concern-
ing supercritical problems. There are some analytical studies for the ground
states of two-component BEC without the internal atomic Josephson junction
in the literatures [1, 3, 4, 7]. For the ground states of two-component BEC
with an internal atomic Josephson junction, Bao [2] established existence and
uniqueness results as p = 1 in (1.1). This is the critical case in d = 2. To our
knowledge, there are no analytical and numerical results for the ground states
of two-component BEC with an internal atomic Josephson junction in the gen-
eral case, i.e., 0 < p < 2

(d−2)+ . The main aim of this paper is to establish

existence and uniqueness results and some properties for the ground states of
two-component BEC with an internal atomic Josephson junction in the general
case, i.e., 0 < p < 2

(d−2)+ .

The paper is organized as follows. In Section 2, we prove existence and
uniqueness results for ground states. In Section 3, some properties of the
ground states are established.

2. Existence and uniqueness results for the ground states

Let

V =
( v11 v12
v21 v22

)
.

We say matrix V is positive semi-definite if and only if v11 ≥ 0 and v11v22 −
v212 ≥ 0; and V is nonnegative if and only if v11 ≥ 0 and v12 ≥ 0 and v22 ≥ 0.

Denote

D = {φ1, φ2 : |xφj |2 ∈ L1(Rd), φj ∈ H1(Rd) ∩ L2p+2(Rd), j = 1, 2},
then the ground state φ1g, φ

2
g of (1.3) is also defined as:

If φ1g, φ
2
g ∈ D1 satisfies

(2.1) E(φ1g, φ
2
g) = min

φ1,φ2∈D1)
E(φ1, φ2),

where

(2.2) D1 = D ∩ {φ1, φ2 : ‖φ1‖2L2 + ‖φ2‖2L2 = 1}.
In addition, we introduce the auxiliary energy functional

Ẽ(ψ1(x), ψ2(x)) = E0(ψ
1(x), ψ2(x)) − 2λ

∫

Rd

|ψ1| · |ψ2|dx,

and the auxiliary nonconvex minimization problem is as follows:
Find φ1g, φ

2
g ∈ D1, such that

(2.3) Ẽ(φ1g, φ
2
g) = min

φ1,φ2∈D1

Ẽ(φ1, φ2).

Similarly to [2], we have the following lemmas:
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Lemma 2.1. For the minimizers φ1g, φ
2
g of the nonconvex minimization prob-

lems (2.1) and (2.3), we have

i) If φ1g , φ
2
g is a minimizer of (2.1), then φ1g(x) = eiθ1 |φ1g(x)| and φ2g(x) =

eiθ2 |φ2g(x)| with θ1 and θ2 two constants satisfying θ1 = θ2 if λ < 0; and

θ1 = θ2 ± π if λ > 0. In addition, eiθ3φ1g, e
iθ4φ2g with θ3 and θ4 two constants

satisfying θ3 = θ4 if λ < 0; and θ3 = θ4 ± π if λ > 0 is also a minimizer of

(2.3).
ii) If φ1g, φ

2
g is a minimizer of (2.3), then φ1g(x) = eiθ1 |φ1g(x)| and φ2g(x) =

eiθ2 |φ2g(x)| with θ1 and θ2 two constants. In addition, eiθ3φ1g, e
iθ4φ2g with θ3

and θ4 two constants is also a minimizer of (2.3).
iii) If φ1g, φ

2
g is a minimizer of (2.1), then φ1g, φ

2
g is also a minimizer of (2.3).

iv) If φ1g , φ
2
g is a minimizer of (2.3), then |φ1g|,−sign(λ)|φ2g| is a minimizer

of (2.2).

Lemma 2.2. Assume that v11 ≥ 0, (p− 1)v12 ≥ 0 and v11v22 ≥ max{ 1
p , 1}v212

and at least one of the parameters λ, γ1 = v11 − v22 and γ2 = v11 − v12 is

nonzero for ρ1, ρ2 with ρ1, ρ2 ≥ 0,
√
ρ1,

√
ρ2 ∈ D1. Then Ẽ(

√
ρ1,

√
ρ2) is

strictly convex in ρ1, ρ2.

Proof. By the assumption, matrix V is positive semi-definite, hence it is easy
to prove that

∫

Rd

[
1

2
(|∇φ1|2 + |∇φ2|2) + |x|2(|φ1|2 + |φ2|2) + δ|φ1|2]dx

is convex.
Next we prove the claim that

∫

Rd

(v11|φ1|2p+2 + 2v12|φ1|p+1|φ2|p+1 + v22|φ2|2p+2)dx

is convex.
Indeed, by the condition that v11 ≥ 0, (p − 1)v12 ≥ 0 and v11v22 ≥

max{ 1
p , 1}v212, we can prove that F (x, y) = v11x

p+1 + 2v12x
p+1

2 y
p+1

2 + v22y
p+1

is convex for x, y ≥ 0, and the claim is proved.
Now we need to verify the convexity of the last term, i.e.,

∫

Rd

−|φ1| · |φ2|dx.

Let
√
ρ1,

√
ρ2 ∈ D1, and

√
ρ′1,
√
ρ′2 ∈ D1, then for α ∈ (0, 1),

√
(αρ1 + (1 − α)ρ′1),

√
(αρ2 + (1− α)ρ′2) ∈ D1.

By Cauchy inequality, we have

α
√
ρ1
√
ρ1 + (1− α)

√
ρ′1
√
ρ′2 ≤

√
αρ1 + (1− α)ρ′1 ×

√
αρ2 + (1 − α)ρ′2.

Thus the last term is convex. This completes the proof. �
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Theorem 2.3. Assume that v11 ≥ 0, (p−1)v12 ≥ 0 and v11v22 ≥ max{ 1
p , 1}v212.

Then there exists a minimizer φ1∞, φ
2
∞ ∈ D1 of (2.3). In addition, if at least

one of the parameters λ, γ1 = v11 − v22 and γ2 = v11− v12 is nonzero, then the

minimizer |φ∞1 |, |φ∞2 | is unique.

Proof. It is clear that Ẽ is bounded below by the assumption. Let φ1n, φ
2
n ∈ D1

be a minimizing sequence. Then there exists a constant C such that ‖∇φ1n‖+
‖∇φ2n‖ < C, ‖φ1n‖L2p+2 + ‖φ2n‖L2p+2 < C and

∫
Rd [|x|2|φ1n|2 + |x|2|φ2n|2]dx <

C for all n ≥ 0. Therefore φ1n and φ2n belongs to a weakly compact set in
L2p+2 · H1 and L2

|x|2 = {φ |
∫
Rd |x|2|φ1n|2dx < ∞} with a weighted L2-norm

given by ‖φ‖L2

|x|2
=
(∫

Rd |x|2|φ|2dx
)1/2

. Thus there exist a φ1∞, φ
2
∞ ∈ D and a

subsequence which we denote as the original sequence for simplicity, such that

φ1n ⇀ φ1∞, φ2n ⇀ φ2∞, in L
2 ∩ L2p+2 ∩ L2

|x|2

∇φ1n ⇀ ∇φ1∞, ∇φ2n ⇀ ∇φ2∞, in L2.

Also we can suppose that φ1n and φ2n are nonnegative, since we can replace them

with |φ1n| and |φ2n|, which also minimizing the functionals Ẽ. To show that Ẽ
attains its minimal at φ1∞, φ

2
∞, we recall the constraint ‖φ1n‖2 + ‖φ2n‖2 = 1,

then the functional Ẽ can be rewritten as

Ẽ(φ1n, φ
2
n) = E0(φ

1
n, φ

2
n) + |λ|

∫

Rd

|φ1n − φ2n|2dx− |λ|.

First, we show that for any given ε > 0,

(2.4)

∫

Rd

v12|φ1∞|p+1|φ2∞|p+1dx ≤ lim inf
n→∞

∫

Rd

v12|φ1n|p+1|φ2n|p+1dx + ε.

When v12 ≥ 0, this is obviously true. For v12 ≤ 0, we decompose Rd into two
parts, a bounded region BR = |x| ≤ R and BcR := Rd \B, such that |x|2 ≥ 1/η
on BcR, where η > 0 sufficiently small. Then

∫
Bc

R
(|φ1n|2+ |φ2n|2)dx ≤ Cη in BcR.

Using the Sobolev-Gagliardo inequality, for d = 3 and 2∗ = 6, we have
∫

Bc
R

|φ1n|2p+2dx ≤
∫

Bc
R

|φ1n|3p · |φ1n|2−pdx

≤
(∫

Bc
R

|φ1n|6dx
) 3p

6
(∫

Bc
R

|φ1n|2dx
) 2−p

2

= ‖φ1n‖3p2∗‖φ1n‖2−p2 ≤M‖∇φ1n‖3p2 · Cη 2−p
2 ≤MC3p+1η

2−p
2 ,

where M is a constant. Thus, by choosing R sufficiently large, we have, for all
n, ∫

Bc
R

|φ1n|2p+2dx ≤ ε

2(1 + |v12|)
.

Similarly, by using Sobolev inequality, we can get the same result for the cases
d = 1 and d = 2.
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The same conclusion holds for φ2n. Notice that for φ1∞ and φ2∞, by the
weak lower semicontinuous property of L2p+2(Rd)-norm, H1(Rd)-norm and
L2
|x|2(R

d)-norm, we can have

‖∇φ1∞‖+ ‖∇φ2∞‖ < C, ‖φ1∞‖L2p+2 + ‖φ2∞‖L2p+2 < C and
∫

Rd

[|x|2|φ1∞|2 + |x|2|φ2∞|2]dx < C.

Following the above arguments, the same conclusion holds for φ1∞ and φ2∞, i.e.,
we have

∫

Bc
R

|φjn|2p+2dx ≤ ε

2(1 + |v12|)
,

∫

Bc
R

|φj∞|2p+2dx ≤ ε

2(1 + |v12|)
, j = 1, 2, N ≥ 0.

Then, by the Cauchy-Schwarz inequality, we have for n ≥ 0

|
∫

Bc
R

v12|φ1n|p+1|φ2n|p+1dx| ≤ |v12|
(∫

Bc
R

|φ1n|2p+2|dx
) 1

2
(∫

Bc
R

|φ2n|2p+2|dx
) 1

2

≤ ε

2
,

and

|
∫

Bc
R

v12|φ1∞|p+1|φ2∞|p+1dx| ≤ ε

2
.

Next, in the ball BR, applying the Sobolev embedding theorem, the strong
convergence holds,

φ1n → φ1∞, φ2n → φ2∞, in L
2(BR) ∩ L2p+2(BR).

By writing

(2.5)

|
∫

BR

v12|φ1n|p+1|φ2n|p+1dx−
∫

BR

v12|φ1∞|p+1|φ2∞|p+1dx|

≤ |v12|
(
|
∫

BR

(|φ1n|p+1| − |φ1∞|p+1||φ2n|p+1|dx|

+ |
∫

BR

(|φ2n|p+1| − |φ2∞|p+1||φ2∞|p+1|dx|
)

≤ C(‖φ1n − φ1∞‖L2p+2(BR) + ‖φ2n − φ2∞‖L2p+2(BR)).

Hence, the inequality (2.4) holds by combining the above results.
In a similar argument, we can prove that

lim sup
n→∞

|
∫

Rd

(|φ1n|p+1 + |φ2n|p+1)dx−
∫

Rd

(|φ1∞|p+1 + |φ2∞|p+1)dx| ≤ ε.
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Since L2p+2(Rd)-norm, H1(Rd)-norm and L2
|x|2(R

d)-norm, are all weakly lower

semicontinuous, we have

Ẽ(φ1∞, φ
2
∞) ≤ lim inf

n→∞
Ẽ(φ1n, φ

2
n) + ε, ε ≥ 0

which immediately implies that Ẽ(φ1∞, φ
2
∞) ≤ lim infn→∞ Ẽ(φ1n, φ

2
n).Moreover,

φ1∞, φ
2
∞ ∈ D1, by (2.5) which implies the existence of minimizer of the problem

(2.3).
In addition, if at least one of the parameters λ, γ1, γ2 is nonzero, the unique-

ness of |φ1∞|, |φ2∞| follows from the strict convexity of Ẽ. For the case δ 6= 0
and λ = γ1 = γ2 = 0, the uniqueness is easy to derive. �

Combining the results in Lemma 2.1 and Theorem 2.1, we immediately have
the following existence and uniqueness results for the ground states of (1.3):

Theorem 2.4. Assume that v11 ≥ 0, (p−1)v12 ≥ 0 and v11v22 ≥ max{ 1
p , 1}v212.

Then there exists a ground state φ1g, φ
2
g of (1.3). Furthermore, eiθ1 |φ1g|, eiθ2 |φ2g |

is also a ground state of (1.3) with θ1 and θ2 two constants satisfying θ1− θ2 =
±π when λ > 0 and θ1 = θ2 when λ <, respectively. In addition, if at least

one of the parameters δ, λ, γ1 = v11 − v22 and γ2 = v11 − v12 is nonzero, then

the ground state |φg1|,−sign(λ)|φ
g
2| is unique. In contrast, if 2

3 < p < 2
d−2 ,

d = 2, 3, and v11 < 0 or v22 < 0 or v12 < 0 with v212 > v11v22, then there exist

no ground states of (1.3).

Proof. The first part of the theorem follows from Lemma 2.1 and Theorem 2.3.
We are going to prove the nonexistence results.

In the case where d = 3, choose φ1ε =
√
θ

(επ)3/4
e−

|x|2

2ε , and φ2ε =
√
1−θ

(επ)3/4
e−

|x|2

2ε ,

θ ∈ [0, 1], ε > 0.

When v11 < 0, choosing θ = 1, i.e., φ1ε =
1

(επ)3/4
e−

|x|2

2ε , φ2ε = 0, we obtain
∫

Rd

1

2
(|∇φ1ε |2 + |∇φ2ε|2)dx =

3

4
ε−1,

∫

Rd

|x|2(|φ1ε|2 + |φ2ε|2)dx =
3

2
ε,

∫

Rd

δ|φ1ε|2dx = δ,

and

1

2p+ 2

∫

Rn

(v11|φ1ε|2p+2 + v22|φ2ε|2p+2 + 2v12|φ1ε|p+1|φ2ε|p+1)dx

=
v11
2

(p+ 1)−
5
2 (πε)−

3p
2 .

Hence, we have

E(φ1ε, 0) =
3

4
ε−1 +

3

2
ε+ 1 +

v11
2

(p+ 1)−
5
2 (πε)−

3p
2 .
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Then by p > 2
3 , limε→0+ E(φ1ε, 0) = −∞.

When v22 < 0, choosing θ = 0, i.e., φ2ε =
1

(επ)3/4
e−

|x|2

2ε , φ1ε = 0, we obtain

E(0, φ2ε) =
3

4
ε−1 +

3

2
ε+

v22
2

(p+ 1)−
5
2 (πε)−

3p
2 .

Then by p > 2
3 , limε→0+ E(0, φ2ε) = −∞.

When v11 ≥ 0, v22 ≥ 0, v12 < 0 and v212 > v11v22, choosing

θ =
(v22 − v12)

2
p+1

(v11 − v12)
2

p+1 + (v22 − v12)
2

p+1

∈ (0, 1),

then

vθ : = v11θ
p+1 + 2v12θ

p+1

2 (1− θ)
p+1

2 + v22(1− θ)p+1

=
(v11v22 − v212)(v11 + v22 − 2v12)

((v11 − v12)
2

p+1 + (v22 − v12)
2

p+1 )p+1
< 0,

and

E(ψ1
ε , ψ

2
ε ) =

3

4
ε−1 +

3

2
ε+ δθ +

1

2
(p+ 1)−

5
2 (πε)−

3p
2 vθ + 2λ

√
θ(1− θ).

Then, by p > 2
3 , limε→0+ E(φ1ε, φ

2
ε) = −∞. Thus, there exists no ground state

in these cases.
In the case d = 2, similar to the above method, we can obtain the same

conclusion holds. This completes the proof. �

3. Properties of the ground states

In this section, we will show some properties of the ground states with large
parameters λ or δ.

Let us define

(3.1) E1(φ) =

∫

Rd

[
1

2
|∇φ|2 + (|x|2 + δ

2
)|φ|2 + v11 + 2v12 + v22

2
|φ|2p+2],

(3.2) E2(φ) =

∫

Rd

[
1

2
|∇φ|2 + |x|2|φ|2 + β

2
|φ|2p+2].

Similarly to the argument as in [6], it is easy to prove that there exists a
unique positive minimizer of (3.1) under the constraint

(3.3) ‖φ‖2L2 =

∫

Rd

|φ|2dx =
1

2
,

and there exists a unique positive minimizer of (3.2) under the constraint

(3.4) ‖φ‖2L2 =

∫

Rd

|φ|2dx = 1.
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Theorem 3.1. Suppose v11 ≥ 0, (p − 1)v12 ≥ 0 and v11v22 ≥ max{ 1
p , 1}v212.

For fixed δ, there exists λ0 > 0 such that, for every λ > λ0, ground state φ1λ, φ
2
λ

of (1.3) with respect to λ, satisfying φ1λ 6= 0, φ2λ 6= 0.

Proof. Without loss of generality, we assume λ < 0 and the ground state φ1λ ≥
0, φ2λ ≥ 0. Since φ1λ, φ

2
λ ∈ D1, we have

(3.5) Ẽ(|ψ1
λ|, |ψ2

λ|) ≤ Ẽ(ψg, ψg),

where φg is the unique positive minimizer of (3.1) under the constraint (3.3).
Noticing

(3.6) Ẽ(ψ1, ψ2) = E0(ψ1, ψ2) + |λ|
∫

Rd

|φ1 − φ2|2dx− |λ|, φ1, φ2 ∈ D1,

we have

(3.7) Ẽ(ψg, ψg) = 2E1(ψg)− |λ|.
Substituting (3.7) into (3.5) and noticing (3.6), there exists a constant C > 0
such that

(3.8) ‖φ1λ − φ2λ‖L2 ≤ C

|λ| , |λ| > 0.

Then the fact φ1λ, φ
2
λ ∈ D1 and (3.8) imply the conclusion. �

Theorem 3.2. Suppose v11 ≥ 0, (p − 1)v12 ≥ 0 and v11v22 ≥ max{ 1
p , 1}v212.

For fixed λ, there exists δ0 > 0 such that, for every |δ| > δ0, there exists ε0 > 0
ground state φ1δ , φ

2
δ of (1.3) with respect to δ, satisfying |‖φ1δ‖L2 − ‖φ2δ‖L2 | >

1− ε0.

Proof. When δ > 0, we take β = v22 in (3.2). Since 0, φg ∈ D1, we have

(3.9) Ẽ(|ψ1
δ |, |ψ2

δ |) ≤ Ẽ(0, ψg),

where φg is the unique positive minimizer of (3.2) under the constraint (3.4).
Noticing

(3.10) Ẽ(ψ1, ψ2) = E0(ψ1, ψ2) + |λ|
∫

Rd

|φ1 − φ2|2dx− |λ|, φ1, φ2 ∈ D1,

we have

(3.11) Ẽ(0, ψg) = E2(ψg) + |λ|
∫

Rd

|φ− g|2dx− |λ|.

Substituting (3.11) into (3.9) and noticing (3.10), there exists a constant
C > 0 such that

(3.12) ‖φ1δ‖2L2 ≤ C

δ
.

Furthermore the fact φ1δ , φ
2
δ ∈ D1 and (3.12) imply

(3.13) ‖φ2δ‖2L2 > 1− C

δ
.
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Then there exists δ0 > 0, for any δ > δ0, there exists ε0 > 0 such that

(3.14) ‖φ1δ‖L2 <
ε0
2
,

and

(3.15) ‖φ2δ‖L2 > 1− ε0
2
.

(3.14) and (3.15) imply the conclusion.
When δ < 0, we take β = v11 in (3.2). Using the fact φg, 0 ∈ D1, the

conclusion can be established by similar argument as the case δ > 0. �
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