DOI QR코드

DOI QR Code

Extensions of linearly McCoy rings

  • Cui, Jian ;
  • Chen, Jianlong
  • Received : 2012.04.08
  • Published : 2013.09.30

Abstract

A ring R is called linearly McCoy if whenever linear polynomials $f(x)$, $g(x){\in}R[x]{\backslash}\{0\}$ satisfy $f(x)g(x)=0$, there exist nonzero elements $r,s{\in}R$ such that $f(x)r=sg(x)=0$. In this paper, extension properties of linearly McCoy rings are investigated. We prove that the polynomial ring over a linearly McCoy ring need not be linearly McCoy. It is shown that if there exists the classical right quotient ring Q of a ring R, then R is right linearly McCoy if and only if so is Q. Other basic extensions are also considered.

Keywords

polynomial ring;linearly McCoy ring;matrix ring;semi-commutative ring;McCoy ring

References

  1. D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. https://doi.org/10.1080/00927879808826274
  2. G. M. Bergman, The Diamond Lemma for ring theory, Adv. Math. 29 (1978), no. 2, 178-218. https://doi.org/10.1016/0001-8708(78)90010-5
  3. A. M. Buhphang and M. B. Rege, Semi-commutative modules and Armendariz modules, Arab. J. Math. Sci. 8 (2002), no. 1, 53-65.
  4. V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615. https://doi.org/10.1016/j.jpaa.2007.06.010
  5. J. Cui and J. L. Chen, Linearly McCoy rings and their generalizations, Commun. Math. Res. 26 (2010), no. 2, 159-175.
  6. J. Cui and J. L. Chen, On McCoy modules, Bull. Korean Math. Soc. 48 (2011), no. 1, 23-33. https://doi.org/10.4134/BKMS.2011.48.1.023
  7. Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), no. 1, 45-52. https://doi.org/10.1016/S0022-4049(01)00053-6
  8. C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. https://doi.org/10.1081/AGB-120013179
  9. Y. C. Jeon, H. K. Kim, Y. Lee, and J. S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), no. 1, 135-146. https://doi.org/10.4134/BKMS.2009.46.1.135
  10. M. T. Kosan, Extensions of rings having McCoy condition, Canad. Math. Bull. 52 (2009), no. 2, 267-272. https://doi.org/10.4153/CMB-2009-029-5
  11. T. K. Lee and T. L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), no. 3, 583-593.
  12. Z. Lei, J. L. Chen, and Z. L. Ying, A question on McCoy rings, Bull. Aust. Math. Soc. 76 (2007), no. 1, 137-141. https://doi.org/10.1017/S0004972700039526
  13. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley, New York, 1987.
  14. N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295. https://doi.org/10.2307/2303094
  15. P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141. https://doi.org/10.1016/j.jalgebra.2005.10.008
  16. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. https://doi.org/10.3792/pjaa.73.14
  17. Z. L. Ying, J. L. Chen, and Z. Lei, Extensions of McCoy rings, Northeast. Math. J. 24 (2008), no. 1, 85-94.