Extensions of linearly McCoy rings

  • Cui, Jian (Department of Mathematics Anhui Normal University) ;
  • Chen, Jianlong (Department of Mathematics Southeast University)
  • Received : 2012.04.08
  • Published : 2013.09.30


A ring R is called linearly McCoy if whenever linear polynomials $f(x)$, $g(x){\in}R[x]{\backslash}\{0\}$ satisfy $f(x)g(x)=0$, there exist nonzero elements $r,s{\in}R$ such that $f(x)r=sg(x)=0$. In this paper, extension properties of linearly McCoy rings are investigated. We prove that the polynomial ring over a linearly McCoy ring need not be linearly McCoy. It is shown that if there exists the classical right quotient ring Q of a ring R, then R is right linearly McCoy if and only if so is Q. Other basic extensions are also considered.


  1. D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272.
  2. G. M. Bergman, The Diamond Lemma for ring theory, Adv. Math. 29 (1978), no. 2, 178-218.
  3. A. M. Buhphang and M. B. Rege, Semi-commutative modules and Armendariz modules, Arab. J. Math. Sci. 8 (2002), no. 1, 53-65.
  4. V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615.
  5. J. Cui and J. L. Chen, Linearly McCoy rings and their generalizations, Commun. Math. Res. 26 (2010), no. 2, 159-175.
  6. J. Cui and J. L. Chen, On McCoy modules, Bull. Korean Math. Soc. 48 (2011), no. 1, 23-33.
  7. Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), no. 1, 45-52.
  8. C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761.
  9. Y. C. Jeon, H. K. Kim, Y. Lee, and J. S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), no. 1, 135-146.
  10. M. T. Kosan, Extensions of rings having McCoy condition, Canad. Math. Bull. 52 (2009), no. 2, 267-272.
  11. T. K. Lee and T. L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), no. 3, 583-593.
  12. Z. Lei, J. L. Chen, and Z. L. Ying, A question on McCoy rings, Bull. Aust. Math. Soc. 76 (2007), no. 1, 137-141.
  13. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley, New York, 1987.
  14. N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295.
  15. P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141.
  16. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17.
  17. Z. L. Ying, J. L. Chen, and Z. Lei, Extensions of McCoy rings, Northeast. Math. J. 24 (2008), no. 1, 85-94.