DOI QR코드

DOI QR Code

COEFFICIENT BOUNDS FOR CERTAIN SUBCLASSES OF MEROMORPHIC AND BI-UNIVALENT FUNCTIONS

  • Panigrahi, Trailokya
  • Received : 2012.05.28
  • Published : 2013.09.30

Abstract

In the present investigation, the author introduces two interesting subclasses of normalized meromorphic univalent functions $w=f(z)$ defined on $\tilde{\Delta}:=\{z{\in}\mathbb{C}:1<{\mid}z{\mid}<{\infty}\}$ whose inverse $f^{-1}(w)$ is also univalent meromorphic in $\tilde{\Delta}$. Estimates for the initial coefficients are obtained for the functions in these new subclasses.

Keywords

meromorphic functions;univalent functions;bi-univalent functions;inverse functions;coefficient bounds

References

  1. P. L. Duren, Coefficients of meromorphic schlicht functions, Proc. Amer. Math. Soc. 28 (1971), 169-172.
  2. B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), no. 9, 1569-1973. https://doi.org/10.1016/j.aml.2011.03.048
  3. Y. Kubota, Coefficients of meromorphic univalent functions, Kodai Math. Sem. Rep. 28 (1977), no. 2-3, 253-261. https://doi.org/10.2996/kmj/1138847445
  4. Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975.
  5. M. Schiffer, Sur un probleme d extremum de la repres entation conforme, Bull. Soc. Math. France 66 (1938), 48-55.
  6. G. Schober, Coefficients of inverses of meromorphic univalent functions, Proc. Amer. Math. Soc. 67(1977), no. 1, 111-116. https://doi.org/10.1090/S0002-9939-1977-0454000-3
  7. G. Springer, The coefficient problem for schlicht mappings of the exterior of the unit circle, Trans. Amer. Math. Soc. 70 (1951), 421-450. https://doi.org/10.1090/S0002-9947-1951-0041935-5
  8. H. M. Srivastava, A. K. Mishra, and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), no. 10, 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009
  9. Q.-H. Xu, Y.-C. Gui, and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), no. 6, 990-994. https://doi.org/10.1016/j.aml.2011.11.013

Cited by

  1. Certain Subclasses of Meromorphically Bi-Univalent Functions vol.40, pp.2, 2017, https://doi.org/10.1007/s40840-016-0335-1
  2. Coefficient Estimates for New Subclasses of Meromorphic Bi-Univalent Functions vol.2014, 2014, https://doi.org/10.1155/2014/376076