DOI QR코드

DOI QR Code

COEFFICIENT BOUNDS FOR CERTAIN SUBCLASSES OF MEROMORPHIC AND BI-UNIVALENT FUNCTIONS

  • Received : 2012.05.28
  • Published : 2013.09.30

Abstract

In the present investigation, the author introduces two interesting subclasses of normalized meromorphic univalent functions $w=f(z)$ defined on $\tilde{\Delta}:=\{z{\in}\mathbb{C}:1<{\mid}z{\mid}<{\infty}\}$ whose inverse $f^{-1}(w)$ is also univalent meromorphic in $\tilde{\Delta}$. Estimates for the initial coefficients are obtained for the functions in these new subclasses.

References

  1. P. L. Duren, Coefficients of meromorphic schlicht functions, Proc. Amer. Math. Soc. 28 (1971), 169-172.
  2. B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), no. 9, 1569-1973. https://doi.org/10.1016/j.aml.2011.03.048
  3. Y. Kubota, Coefficients of meromorphic univalent functions, Kodai Math. Sem. Rep. 28 (1977), no. 2-3, 253-261. https://doi.org/10.2996/kmj/1138847445
  4. Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975.
  5. M. Schiffer, Sur un probleme d extremum de la repres entation conforme, Bull. Soc. Math. France 66 (1938), 48-55.
  6. G. Schober, Coefficients of inverses of meromorphic univalent functions, Proc. Amer. Math. Soc. 67(1977), no. 1, 111-116. https://doi.org/10.1090/S0002-9939-1977-0454000-3
  7. G. Springer, The coefficient problem for schlicht mappings of the exterior of the unit circle, Trans. Amer. Math. Soc. 70 (1951), 421-450. https://doi.org/10.1090/S0002-9947-1951-0041935-5
  8. H. M. Srivastava, A. K. Mishra, and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), no. 10, 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009
  9. Q.-H. Xu, Y.-C. Gui, and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), no. 6, 990-994. https://doi.org/10.1016/j.aml.2011.11.013

Cited by

  1. Certain Subclasses of Meromorphically Bi-Univalent Functions vol.40, pp.2, 2017, https://doi.org/10.1007/s40840-016-0335-1
  2. Coefficient Estimates for New Subclasses of Meromorphic Bi-Univalent Functions vol.2014, 2014, https://doi.org/10.1155/2014/376076