DOI QR코드

DOI QR Code

CYCLIC SUBGROUP SEPARABILITY OF CERTAIN GRAPH PRODUCTS OF SUBGROUP SEPARABLE GROUPS

  • Wong, Kok Bin ;
  • Wong, Peng Choon
  • Received : 2013.01.10
  • Published : 2013.09.30

Abstract

In this paper, we show that tree products of certain subgroup separable groups amalgamating normal subgroups are cyclic subgroup separable. We then extend this result to certain graph product of certain subgroup separable groups amalgamating normal subgroups, that is we show that if the graph has exactly one cycle and the cycle is of length at least four, then the graph product is cyclic subgroup separable.

Keywords

cyclic subgroup separability;graph products;subgroup separable;polycyclic-by-finite groups

References

  1. R. B. J. T. Allenby, Polygonal products of polycyclic by finite groups, Bull. Austral. Math. Soc. 54 (1996), no. 3, 369-372. https://doi.org/10.1017/S0004972700021778
  2. R. B. J. T. Allenby, G. Kim, and C. Y. Tang, Residual finiteness of outer automorphism groups of certain pinched 1-relator groups, J. Algebra 246 (2001), no. 2, 849-858. https://doi.org/10.1006/jabr.2001.8987
  3. R. B. J. T. Allenby, G. Kim, and C. Y. Tang, Residual finiteness of outer automorphism groups of finitely generated non-triangle Fuchsian groups, Internat. J. Algebra Comput. 15 (2005), 59-72. https://doi.org/10.1142/S0218196705002104
  4. G. Baumslag, On the residual finiteness of generalised free products of nilpotent groups, Trans. Amer. Math. Soc. 106 (1963), 193-209. https://doi.org/10.1090/S0002-9947-1963-0144949-8
  5. A. M. Brunner, M. L. Frame, Y. W. Lee, and N. J. Wielenberg, Classifying torsion-free subgroups of the Picard group, Trans. Amer. Math. Soc. 282 (1984), no. 1, 205-235. https://doi.org/10.1090/S0002-9947-1984-0728710-2
  6. Y. D. Chai, Y. Choi, G. Kim, and C. Y. Tang, Outer automorphism groups of certain tree products of abelian groups, Bull. Austral. Math. Soc. 77 (2008), no. 1, 9-20.
  7. B. Fine, J. Howie, and G. Rosenberger, One-relator quotients and free products of cyclics, Proc. Amer. Math. Soc. 102 (1988), no. 2, 249-254. https://doi.org/10.1090/S0002-9939-1988-0920981-1
  8. E. K. Grossman, On the residual finiteness of certain mapping class groups, J. London Math. Soc. 2 (1974), 160-164.
  9. M. Hall Jr., Coset representations in free groups, Trans. Amer. Math. Soc. 67 (1949), 421-432. https://doi.org/10.1090/S0002-9947-1949-0032642-4
  10. A. Karrass, A. Pietrowski, and D. Solitar, The subgroups of polygonal products of groups, (unpublished manuscript).
  11. G. Kim, On polygonal products of finitely generated abelian groups, Bull. Austral. Math. Soc. 45 (1992), no. 3, 453-462. https://doi.org/10.1017/S0004972700030343
  12. G. Kim, Cyclic subgroup separability of generalized free products, Canad. Math. Bull. 36 (1993), no. 3, 296-302. https://doi.org/10.4153/CMB-1993-042-7
  13. G. Kim, Cyclic subgroup separability of HNN extensions, Bull. Korean Math. Soc. 30 (1993), no. 2, 285-293.
  14. G. Kim, Outer automorphism groups of certain polygonal products of groups, Bull. Korean Math. Soc. 45 (2008), no. 1, 45-52. https://doi.org/10.4134/BKMS.2008.45.1.045
  15. G. Kim and C. Y. Tang, A criterion for the conjugacy separability of amalgamated free products of conjugacy separable groups, J. Algebra 184 (1996), no. 3, 1052-1072. https://doi.org/10.1006/jabr.1996.0298
  16. G. Kim and C. Y. Tang, Conjugacy separability of generalized free products of finite extension of resid-ually nilpotent groups, in "Group Theory (Proc.'96 Intl. Symposium)", 10-24, Springer-Verlag, Berlin, 1998.
  17. G. Kim and C. Y. Tang, Cyclic subgroup separability of HNN-extensions with cyclic associated subgroups, Canad. Math. Bull. 42 (1999), no. 3, 335-343. https://doi.org/10.4153/CMB-1999-039-4
  18. G. Kim and C. Y. Tang, Outer automorphism groups of polygonal products of certain conjugacy separable groups, J. Korean Math. Soc. 45 (2008), no. 6, 1741-1752. https://doi.org/10.4134/JKMS.2008.45.6.1741
  19. A. I. Mal'cev, On homomorphisms onto finite groups, Ivanov. Gos Ped. Inst. Ucen. Zap. 18 (1958), 49-60.
  20. V. Metaftsis and E. Raptis, Subgroup separability of HNN extensions with abelian base groups, J. Algebra 245 (2001), no. 1, 42-49. https://doi.org/10.1006/jabr.2001.8910
  21. E. Raptis, O. Talelli, and D. Varsos, On the conjugacy separability of certain graphs of groups, J. Algebra 199 (1998), no. 1, 327-336. https://doi.org/10.1006/jabr.1997.7176
  22. P. Stebe, Residual finiteness of a class of knot groups, Comm. Pure Appl. Math. 21 (1968), 563-583. https://doi.org/10.1002/cpa.3160210605
  23. C. Y. Tang, Conjugacy separability of generalized free products of certain conjugacy separable groups, Canad. Math. Bull. 38 (1995), no. 1, 120-127. https://doi.org/10.4153/CMB-1995-017-5
  24. C. Y. Tang, Conjugacy separability of generalized free products of surface groups, J. Pure Appl. Algebra 120 (1997), no. 2, 187-194. https://doi.org/10.1016/S0022-4049(96)00060-6
  25. K. B. Wong and P. C.Wong, Polygonal products of residually finite groups, Bull. Korean Math. Soc. 44 (2007), no. 1, 61-71. https://doi.org/10.4134/BKMS.2007.44.1.061
  26. K. B. Wong and P. C.Wong, Conjugacy separability and outer automorphism groups of certain HNN extensions, J. Algebra 334 (2011), 74-83. https://doi.org/10.1016/j.jalgebra.2011.02.038
  27. K. B. Wong and P. C.Wong, Residual finiteness, subgroup separability and Conjugacy separability of certain HNN extensions, Math. Slovaca 62 (2012), no. 5, 875-884. https://doi.org/10.2478/s12175-012-0052-7
  28. P. C.Wong and K. B.Wong, The cyclic subgroup separability of certain HNN extensions, Bull. Malays. Math. Sci. Soc. (2) 29 (2006), no. 2, 111-117.
  29. P. C.Wong and K. B.Wong, Residual finiteness of outer automorphism groups of certain tree products, J. Group Theory 10 (2007), no. 3, 389-400.
  30. P. C.Wong and K. B.Wong, Subgroup separability and conjugacy separability of certain HNN extensions, Bull. Malays. Math. Sci. Soc. (2) 31 (2008), no. 1, 25-33.
  31. W. Zhou and G. Kim, Class-preserving automorphisms and inner automorphisms of certain tree products of groups, J. Algebra 341 (2011), 198-208. https://doi.org/10.1016/j.jalgebra.2011.05.036
  32. W. Zhou and G. Kim, Class-preserving automorphisms of generalized free products amalgamating a cyclic normal subgroup, Bull. Korean Math. Soc. 49 (2012), no. 5, 949-959. https://doi.org/10.4134/BKMS.2012.49.5.949