DOI QR코드

DOI QR Code

Protective effects of a mineral aqueous solution on toxicity in mouse liver and kidney

  • Park, In-Jae (Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine & Korea Zoonosis Research Institute, Chonbuk National University) ;
  • Cha, Se-Yeoun (Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine & Korea Zoonosis Research Institute, Chonbuk National University) ;
  • Kang, Min (Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine & Korea Zoonosis Research Institute, Chonbuk National University) ;
  • So, Yang-Sub (Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine & Korea Zoonosis Research Institute, Chonbuk National University) ;
  • Bahng, Ji-Yun (Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine & Korea Zoonosis Research Institute, Chonbuk National University) ;
  • Jang, Hyung-Kwan (Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine & Korea Zoonosis Research Institute, Chonbuk National University)
  • Received : 2013.03.27
  • Accepted : 2013.08.08
  • Published : 2013.09.30

Abstract

We demonstrated that a mineral aqueous solution (MAS) administered to mice functionally and histologically protected against cisplatin-induced acute renal failure (ARF) and $CCl_4$-induced acute liver failure (ALF). In ARF model, 0.4 and 0.2% MAS decreased mortality and the serum concentrations of blood urea nitrogen (BUN) and creatine in mice. Additionally, 0.4 and 0.2% MAS reduced contraction of distal convoluted tubules and suppressed expression of the proinflammatory cytokines interlukein-6 (IL-6) and tumor necrosis factor (TNF-${\alpha}$) in the kidney. In ALF model, 0.4 and 0.2% MAS decreased serum concentrations of alanine aminotransferase and aspartate aminotransferase in mice. Additionally, 0.4 and 0.2% MAS reduced necrotic areas and suppressed expression of IL-6 and TNF-${\alpha}$ in the liver. These results indicate that a MAS might have protective effects against ARF and ALF.

References

  1. Baliga R, Zhang Z, Baliga M, Ueda N, Shah SV. In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity. Kidney Int 1998, 53, 394-401. https://doi.org/10.1046/j.1523-1755.1998.00767.x
  2. Brouckaert P, Fiers W. Tumor necrosis factor and the systemic inflammatory response syndrome. Curr Top Microbiol Immunol 1996, 216, 167-187.
  3. Bruccoleri A, Gallucci R, Germolec DR, Blackshear P, Simeonova P, Thurman RG, Luster MI. Induction of early-immediate genes by tumor necrosis factor $\alpha$ contribute to liver repair following chemical-induced hepatotoxicity. Hepatology 1997, 25, 133-141. https://doi.org/10.1002/hep.510250125
  4. Burne MJ, Daniels F, El Ghandour A, Mauiyyedi S, Colvin RB, O'Donnell MP, Rabb H. Identification of the $CD_{4+}$ T cell as a major pathogenic factor in ischemic acute renal failure. J Clin Invest 2001, 108, 1283-1290. https://doi.org/10.1172/JCI200112080
  5. Caraceni P, Van Thiel DH. Acute liver failure. Lancet 1995, 345, 163-169. https://doi.org/10.1016/S0140-6736(95)90171-X
  6. Carlisle EM. Silicon: an essential element for the chick. Science 1972, 178, 619-621. https://doi.org/10.1126/science.178.4061.619
  7. Davis CA, Nick HS, Agarwal A. Manganese superoxide dismutase attenuates cisplatin-induced renal injury: importance of superoxide. J Am Soc Nephrol 2001, 12, 2683-2690.
  8. Deng J, Kohda Y, Chiao H, Wang Y, Hu X, Hewitt SM, Miyaji T, McLeroy P, Nibhanupudy B, Li S, Star RA. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int 2001, 60, 2118-2128. https://doi.org/10.1046/j.1523-1755.2001.00043.x
  9. Gabay C, Smith MF Jr, Eidlen D, Arend WP. Interleukin 1 receptor antagonist (IL-1Ra) is an acute-phase protein. J Clin Invest 1997, 99, 2930-2940. https://doi.org/10.1172/JCI119488
  10. Johnson SJ, Hines JE, Burt AD. Macrophage and perisinusoidal cell kinetics in acute liver injury. J Pathol 1992, 166, 351-358. https://doi.org/10.1002/path.1711660406
  11. Kalinichenko VV, Bhattacharyya D, Zhou Y, Gusarova GA, Kim W, Shin B, Costa RH. Foxf1 +/ mice exhibit defective stellate cell activation and abnormal liver regeneration following $CCl_4$ injury. Hepatology 2003, 37, 107-117. https://doi.org/10.1053/jhep.2003.50005
  12. Kaushal GP, Kaushal V, Hong X, Shah SV. Role and regulation of activation of caspases in cisplatin-induced injury to renal tubular epithelial cells. Kidney Int 2001, 60, 1726-1736. https://doi.org/10.1046/j.1523-1755.2001.00026.x
  13. Leibbrandt MEI, Wolfgang GHI, Metz AL, Ozobia AA, Haskins JR. Critical subcellular targets of cisplatin and related platinum analogs in rat renal proximal tubule cells. Kidney Int 1995, 48, 761-770. https://doi.org/10.1038/ki.1995.348
  14. Lieberthal W, Triaca V, Levine J. Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am J Physiol 1996, 270, F700-708.
  15. Matsushima H, Yonemura K, Ohishi K, Hishida A. The role of oxygen free radicals in cisplatin-induced acute renal failure in rats. J Lab Clin Med 1998, 131, 518-526. https://doi.org/10.1016/S0022-2143(98)90060-9
  16. Morimoto J, Yoneyama H, Shimada A, Shigihara T, Yamada S, Oikawa Y, Matsushima K, Saruta T, Narumi S. CXC chemokine ligand 10 neutralization suppresses the occurrence of diabetes in nonobese diabetic mice through enhanced $\beta$ cell proliferation without affecting insulitis. J Immunol 2004, 173, 7017-7024. https://doi.org/10.4049/jimmunol.173.11.7017
  17. Morio LA, Chiu H, Sprowles KA, Zhou P, Heck DE, Gordon MK, Laskin DL. Distinct roles of tumor necrosis factor-$\alpha$ and nitric oxide in acute liver injury induced by carbon tetrachloride in mice. Toxicol Appl Pharmacol 2001, 172, 44-51. https://doi.org/10.1006/taap.2000.9133
  18. O'Grady JG, Alexander GJ, Hayllar KM, Williams R. Early indicators of prognosis in fulminant hepatic failure. Gastroenterology 1989, 97, 439-445. https://doi.org/10.1016/0016-5085(89)90081-4
  19. Okuda M, Masaki K, Fukatsu S, Hashimoto Y, Inui K. Role of apoptosis in cisplatin-induced toxicity in the renal epithelial cell line LLC-$PK_1$: implication of the functions of apical membranes. Biochem Pharmacol 2000, 59, 195-201. https://doi.org/10.1016/S0006-2952(99)00303-2
  20. Ostapowicz G, Fontana RJ, Schiødt FV, Larson A, Davern TJ, Han SHB, McCashland TM, Shakil AO, Hay JE, Hynan L, Crippin JS, Blei AT, Samuel G, Reisch J, Lee WM. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med 2002, 137, 947-954. https://doi.org/10.7326/0003-4819-137-12-200212170-00007
  21. Poli G. Liver damage due to free radicals. Br Med Bull 1993, 49, 604-620. https://doi.org/10.1093/oxfordjournals.bmb.a072634
  22. Ramesh G, Reeves WB. Inflammatory cytokines in acute renal failure. Kidney Int 2004, 66 (Suppl 91), S56-61.
  23. Ramesh G, Reeves WB. TNF-$\alpha$ mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest 2002, 110, 835-842. https://doi.org/10.1172/JCI200215606
  24. Ries F, Klastersky J. Nephrotoxicity induced by cancer chemotherapy with special emphasis on cisplatin toxicity. Am J Kidney Dis 1986, 8, 368-379. https://doi.org/10.1016/S0272-6386(86)80112-3
  25. Sasaki S, Yoneyama H, Suzuki K, Suriki H, Aiba T, Watanabe S, Kawauchi Y, Kawachi H, Shimizu F, Matsushima K, Asakura H, Narumi S. Blockade of CXCL10 protects mice from acute colitis and enhances crypt cell survival. Eur J Immunol 2002, 32, 3197-3205. https://doi.org/10.1002/1521-4141(200211)32:11<3197::AID-IMMU3197>3.0.CO;2-1
  26. Schrier RW. Cancer therapy and renal injury. J Clin Invest 2002, 110, 743-745. https://doi.org/10.1172/JCI0216568
  27. Schwarz K, Milne DB. Growth-promoting effects of silicon in rats. Nature 1972, 239, 333-334. https://doi.org/10.1038/239333a0
  28. Sheridan AM, Bonventre JV. Cell biology and molecular mechanisms of injury in ischemic acute renal failure. Curr opin nephrol hypertens 2000, 9, 427-434. https://doi.org/10.1097/00041552-200007000-00015
  29. Slater TF. Free-radical mechanisms in tissue injury. Biochem J 1984, 222, 1-15. https://doi.org/10.1042/bj2220001
  30. Steinman L, Martin R, Bernard C, Conlon P, Oksenberg JR. Multiple sclerosis: deeper understanding of its pathogenesis reveals new targets for therapy. Annu Rev Neurosci 2002, 25, 491-505. https://doi.org/10.1146/annurev.neuro.25.112701.142913
  31. Sugiyama S, Hayakawa M, Kato T, Hanaki Y, Shimizu K, Ozawa T. Adverse effects of anti-tumor drug, cisplatin, on rat kidney mitochondria: disturbances in glutathione peroxidase activity. Biochem Biophys Res Commun 1989, 159, 1121-1127. https://doi.org/10.1016/0006-291X(89)92225-0
  32. Tackey E, Lipsky PE, Illei GG. Rationale for interleukin-6 blockade in systemic lupus erythematosus. Lupus 2004, 13, 339-343. https://doi.org/10.1191/0961203304lu1023oa