DOI QR코드

DOI QR Code

Fabrication and Characterization Nano Porous Anodic ZrO2 Membranes by Two-Step Anodizing

2 단계 양극 산화를 이용한 ZrO2 나노 다공성 산화막의 제조와 특성에 관한 연구

  • Received : 2013.05.30
  • Accepted : 2013.09.03
  • Published : 2013.10.20

Abstract

Zirconium oxide ($ZrO_2$) nano porous membranes were fabricated by electrochemical two-step anodization with an electropolished zirconium substrate in inorganic water-based and organic electrolyte systems containing small amounts of fluoride. Using two-step anodization and organic electrolytes, highly regular and ordered nanotubular $ZrO_2$ oxide layers can be compared with aqueous electrolytes. The morphology and size of the nano porous layers were characterized by FE-SEM (field emission scanning electron microscopy), XRD (X-ray diffraction), and EDS (energy dispersive spectroscopy). Luminescence properties were investigated by photoluminescence measurements.

Keywords

Electrochemistry;Nano-porous oxide film;Anodizing;$ZrO_2$

References

  1. Twite, R. L.; Bierwagen, G. P. Prog. Org. Coat. 1998, 33, 91. https://doi.org/10.1016/S0300-9440(98)00015-0
  2. Montross, C. S.; Wei, T.; Ye, L. Int. J. Fatigue 2002, 24, 1021. https://doi.org/10.1016/S0142-1123(02)00022-1
  3. Li, X.-M.; Reinhoudt, D.; Crego-Calama, M. Chem. Soc. Rev. 2007, 36, 1350. https://doi.org/10.1039/b602486f
  4. Ghicov, A.; Schmuki, P. Chem. Commun. 2009, 2791.
  5. Zhang, C.; Li, C.; Yang, J.; Cheng, Z.; Hou, Z.; Fan, Y.; Lin, J. Langmuir 2009, 25, 7078. https://doi.org/10.1021/la900146y
  6. Lin, C.; Zhang, C.; Li, J. J. Phys. Chem. C 2007, 111, 3300. https://doi.org/10.1021/jp066615l
  7. Tsuchiya, H.; Macak, J. M.; Sieber, I.; Schmuki, P. Small 2005, 1, 722. https://doi.org/10.1002/smll.200400163
  8. Tsuchiya, H.; Macak, J. M.; Ghicov, A.; Taveira, L.; Schmuki, P. Corros. Sci. 2005, 47, 3324. https://doi.org/10.1016/j.corsci.2005.05.041
  9. Cummings, F. R.; Le Roux, L. J.; Mathe, M. K.; Knoesen, D. Mater. Chem. Phys. 2010, 124, 234. https://doi.org/10.1016/j.matchemphys.2010.06.024
  10. Adamopoulos, G.; Thomas, S.; Wobkenberg, P. H.; Bradley, D. D. C.; McLachlan, M. A.; Anthopoulos, T. D. Adv. Mater. 2011, 23, 1894. https://doi.org/10.1002/adma.201003935
  11. Masuda, H.; Fukuda, K. Science 1995, 268, 1466. https://doi.org/10.1126/science.268.5216.1466
  12. Sieber, I.; Hildebrand, H.; Friedrich, A.; Schmuki, P. Electrochem. Commun. 2005, 7, 97. https://doi.org/10.1016/j.elecom.2004.11.012
  13. Chang, J. P.; Lin, Y.-S.; Chu, K. J. Vac. Sci. Technol. B 2001, 19, 1782. https://doi.org/10.1116/1.1396639
  14. Macak, J. M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P. Cur. Opin. Solid State Mater. Sci. 2007, 11, 3. https://doi.org/10.1016/j.cossms.2007.08.004
  15. Li, Y.; Ling, Z. Y.; Chen, S. S.; Wang, J. C. Nanotechnology 2008, 19, 225604. https://doi.org/10.1088/0957-4484/19/22/225604
  16. Berger, S.; Faltenbacher, J.; Bauer, S.; Schmuki, P. Phys. Status Solidi (RRL) 2008, 2, 102. https://doi.org/10.1002/pssr.200802019
  17. Shin, Y.; Lee, S. Nanotechnology 2009, 20, 105301. https://doi.org/10.1088/0957-4484/20/10/105301
  18. Hahn, R.; Berger, S.; Schmuki, P. J. Solid State Electrochem. 2010, 14, 285. https://doi.org/10.1007/s10008-008-0748-3
  19. Ko, T.; Han, K.; Rim, T.-K.; Oh, S. G.; Han, S. J. Kor. Ceram. Soc. 2010, 47, 343. https://doi.org/10.4191/KCERS.2010.47.4.343
  20. Etsell, T. H.; Flengos, S. N. J. Electrochem. Soc. 1972, 119, 1. https://doi.org/10.1149/1.2404121
  21. Shriver, D. F.; Atkins, P. W. Shriver & Atkins' Inorganic Chemistry, 5th ed; Oxford University Press: Oxford, 2010; p 106.

Acknowledgement

Supported by : 한국연구재단