DOI QR코드

DOI QR Code

Synthesis, Characterization, DFT Modeling and Antimicrobial Studies on the Ti(IV), Y(III) and Ce(IV) Ofloxacin Solid Complexes

  • Sadeek, Sadeek A. ;
  • Zordok, Wael A. ;
  • El-Shwiniy, Walaa H.
  • Received : 2013.08.13
  • Accepted : 2013.09.11
  • Published : 2013.10.20

Abstract

A new solid complexes of Ti(IV), Y(III) and Ce(IV) have been synthesized with ofloxacin. The formulae and structure of the complexes have been proposed in the light of analytical, spectral ($^1H$ NMR, IR and UV-Visible), magnetic, molar conductivities and thermal studies. The complexes are soluble in DMSO-$d_6$ and DMF. The measured molar conductance values indicate that, the three complexes are electrolyte in nature. The results support the formation of the complexes and indicated that ofloxacin reacts as a bidentate ligand chelate to the metal ion through the pyridone oxygen and one carboxylato oxygen. The kinetic parameters of thermogravimetric and its differential have been evaluated by using Coats Redfern (CR) and Horowitz-Metzeger (HM) methods. The thermodynamic data reflect the thermal stability for all complexes. The metal- ligand binding of the Ti(IV), Y(III) and Ce(IV) complexes is predicted using density funcational theory at the B3LYP-CEP-31G level of theory and total energy, dipole moment estimation of different Ti(IV), Y(III) and Ce(IV) ofloxacin structures. The biological activities of the ofloxacin, inorganic salts and their metal complexes were assayed against different bacterial species.

Keywords

HOfl;DFT;$^1H$ NMR;IR

References

  1. Nelson, J. M.; Chiller, T. M.; Powers, J. H.; Angulo, F. J. Clin. Infect. Dis. 2007, 44, 977. https://doi.org/10.1086/512369
  2. Kawahara, S. Nippon. Rinsho. 1998, 56, 3096.
  3. Aleixandre, V.; Herrera, G.; Urios, A.; Blanco, M. Antimicrob. Agents Chemother. 1991, 35, 20. https://doi.org/10.1128/AAC.35.1.20
  4. Chu, D. T. W.; Fernandes, P. B. in: B. Testa (Ed.) In Advances in Drug Research; Testa, B., Ed.; Acodemic Press: London, 1991, 21, 39-144. https://doi.org/10.1016/B978-0-12-013321-5.50007-2
  5. Park, H. R.; Chung, K. Y.; Lee, H. C.; Lee, J.-K.; Bark, K.-M. Bull. Korean Chem. Soc. 2000, 21, 849.
  6. Kapetanovic, V.; Milovanovlc, L. J. Talanta 1996, 43, 2123. https://doi.org/10.1016/S0039-9140(96)01999-6
  7. Yoshida, A.; Moroi, R. Anal. Sci. 1991, 7, 351. https://doi.org/10.2116/analsci.7.351
  8. Macias, B.; Villa, M. V.; Sastre, M.; Castineras, A.; Borras, J. J. Pharm. Sci. 2002, 91, 2416. https://doi.org/10.1002/jps.10234
  9. Macias, B.; Villa, M. V.; Rubio, I.; Castineras, A.; Borras, J. J. Inorg. Biochem. 2001, 84, 163. https://doi.org/10.1016/S0162-0134(01)00182-9
  10. Drevensek, P.; Kosmrlj, J.; Giester, G.; Skauge, T., Sletten, E.; Sepcic, K.; Turel, I. J. Inorg. Biochem. 2006, 100, 1755. https://doi.org/10.1016/j.jinorgbio.2006.06.011
  11. Sagdinc, S.; Bayari, S. J. Mol. Struct. (Theochem) 2004, 668, 93. https://doi.org/10.1016/S0166-1280(03)00878-9
  12. Xu, M.; Ma, Z.-R.; Huang, L.; Chen, F.-J.; Zeng, Z.-Z. Spectrochim. Acta, Part A 2011, 78, 503. https://doi.org/10.1016/j.saa.2010.11.018
  13. Sagdinc, S.; Bayarl, S. J. Mol. Struct. 2005, 744-747, 369. https://doi.org/10.1016/j.molstruc.2004.12.013
  14. Li, Y.; Chai, Y.; Yuan, R.; Liang, W. Russ. J. Inorg. Chem. 2008, 53, 704. https://doi.org/10.1134/S0036023608050070
  15. Sagdinc, S.; Bayarl, S. J. Mol. Struct. 2004, 691, 107. https://doi.org/10.1016/j.molstruc.2003.11.053
  16. Zordok, W. A.; El-Shwiniy, W. H.; El-Attar, M. S.; Sadeek, S. A. J. Mol. Struct. 2013, 1047, 267. https://doi.org/10.1016/j.molstruc.2013.04.076
  17. Frisch, M. J.; et al. Gaussian 98, revision A.6; Gaussian Inc.: Pittsburgh, PA, 1998.
  18. Stevens, W. J.; Krauss, M.; Bosch, H.; Jasien, P. G. Can. J. Chem. 1992, 70, 612.
  19. Beecher, D. J.; Wong, A. C. Identification of Hemolysin Bl-Producing Bacillus Cereus Isolated by a Discontinuous Hemolytic Pattern in Blood Agar. Appl. Environ. Microbiol. 1994, 60, 1646.
  20. Rupini, B.; Mamatha, K.; Mogili, R.; Ravinder, M.; Srihari, S. J. Indian Chem. Soc. 2007, 84, 629.
  21. Efthimiadou, E. K.; Sanakis, Y.; Katsaros, N.; Karaliota, A.; Psomas, G. Polyhedron 2007, 26, 1148. https://doi.org/10.1016/j.poly.2006.10.017
  22. Efthimiadou, E. K.; Katsaros, N.; Karaliota, A.; Psomas, G. Bioorg. Med. Chem. Lett. 2007, 17, 1238. https://doi.org/10.1016/j.bmcl.2006.12.032
  23. Efthimiadou, E. K.; Psomas, G.; Sanakis, Y.; Katsaros, N.; Karaliota, A. J. Inorg. Biochem. 2007, 101, 525. https://doi.org/10.1016/j.jinorgbio.2006.11.020
  24. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compound, Part B; Wiley: New York, 1997.
  25. Roeges, P. G. A J. Chem. Educ. 1995, 72, A93.
  26. Ruiz, M.; Ortiz, R.; Perello, L. Inorg. Chim. Acta 1993, 211, 133. https://doi.org/10.1016/S0020-1693(00)85592-9
  27. Ruiz, M.; Perello, L.; Ortiz, R.; Castineiras, A.; Maichle-Mossmer, C.; Canton, E. J. Inorg. Biochem. 1995, 59, 801. https://doi.org/10.1016/0162-0134(94)00068-L
  28. Moawad, M. M.; Hanna, W. G. J. Coord. Chem. 2002, 55, 439. https://doi.org/10.1080/00958970211906
  29. Ismail, T. M. A. J. Coord. Chem. 2005, 58, 141. https://doi.org/10.1080/0095897042000274733
  30. Ruiz, M.; Ortiz, R.; Perello, L. Inorg. Chim. Acta 1993, 211, 133. https://doi.org/10.1016/S0020-1693(00)85592-9
  31. Lever, A. B. P. Inorganic Electronic Spectroscopy; Elesvier: Amsterdam, 1984.
  32. Brzyska, W.; Hakim, M. Polish J. Chem. 1992, 66, 413.
  33. Tagawa, H. Thernochim. Acta 1984, 80, 23. https://doi.org/10.1016/0040-6031(84)87181-6
  34. Coats, A. W.; Redfern, J. P. Nature 1964, 201, 68. https://doi.org/10.1038/201068a0
  35. Horowitz, H. W.; Metzger, G. Anal. Chem. 1963, 35, 1464. https://doi.org/10.1021/ac60203a013
  36. Nair, M. K. M.; Radhakrishnan, P. K. Thermochim. Acta 1995, 261, 141. https://doi.org/10.1016/0040-6031(95)02313-Q
  37. Frost, A. A.; Pearson, R. G. Kinetics and Mechanism-A study of Homogenous Chemical Reaction; Wiley: New York, 1961.
  38. Raman, N.; Kulandaisamy, A.; Jayasubramanion, K. Polish J. Chem. 2002, 76, 1085.
  39. Tweedy, B. G. Phytopathology 1964, 55, 910.
  40. Balhausen, C. J. An Introduction to ligand field; McGraw Hill: New York, 1962.
  41. Chohan, Z. H.; Scozzafava, A.; Supuran, C. T. J. Enzym. Inhib. Med. Chem. 2003, 17, 261.
  42. Chohan, Z. H. Appl. Organomet. Chem. 2002, 10, 17.
  43. Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133. https://doi.org/10.1103/PhysRev.140.A1133
  44. Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
  45. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37.
  46. Flurry Jr., R. L. Molecular Orbital Theory of Bonding in Organic Molecules; Marcel Dekker: New York, 1968.
  47. Hyper Chem 7.5 Release for Windows; Hypercube Inc.: USA, 2003.
  48. Turel, I.; Golic, L.; Bukovec, P.; Gubina, M. J. Inorg. Biochem. 1998, 71, 53. https://doi.org/10.1016/S0162-0134(98)10032-6
  49. Turel, I.; Leban, I.; Klintschar, G.; Bukovec, N.; Zalar, S. J. Inorg. Biochem. 1997, 66, 77. https://doi.org/10.1016/S0162-0134(96)00157-2
  50. Yang, Y.; Gao, H. Spectrochemica Acta, Part A 2012, 85, 303. https://doi.org/10.1016/j.saa.2011.10.019
  51. Andrews, P. C.; Beck, T.; Frasr, B. H.; Junk, P. C.; Massi, M. Polyhedron 2007, 26, 5406.
  52. Khoshnavazi, R.; Salimi, A.; A. Ghiasi-Moaser Polyhedron 2008, 27, 1303. https://doi.org/10.1016/j.poly.2007.12.033
  53. Chen, Q.; Chang, Y. D.; Zubieta, J. Inorganic. Chemica. Acta 1997, 258, 257. https://doi.org/10.1016/S0020-1693(96)05514-4
  54. Shen, L. L. In Quinolone Antimicrobial Agents, 2nd ed.; Hopper, D. C.; Wolfson, J. S.; Eds.; American Society for Microbiology: Washington, DC, 1993; p 77.
  55. Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis, Vol. 1-3; Springer: Berlin, 1999.
  56. Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley: New York, 1994.
  57. Davis, T. J.; Carroll, P. J. Walsh, P. J. J. Organomet. Chem. 2002, 663, 70. https://doi.org/10.1016/S0022-328X(02)01656-X
  58. Liu, Y. Y.; Ma, J. F.; Xie, Y. P. Acta Crystallogr. 2006, Sect. E E62, 3786.
  59. Garima Singh Baghel; Chebrolu P. Rao Polyhedron 2009, 28, 3507. https://doi.org/10.1016/j.poly.2009.07.050
  60. Turel, I.; Leban, I.; Gruber, K.; Bukovec, N. J. Inorg. Biochem. 1996, 61, 197. https://doi.org/10.1016/0162-0134(95)00056-9
  61. Tjaden, E. B.; Swenson, D. C.; Jordan, R. F.; Petersen, J. L. Organomet. 1995, 14, 371. https://doi.org/10.1021/om00001a053
  62. Coles, S. J.; Hursthouse, M. B.; Kelly, D. G.; Toner, A. J.; Walker, N. M. J. Organomet. Chem. 1999, 580, 304. https://doi.org/10.1016/S0022-328X(98)01167-X
  63. Gao, H. L.; Yi, L.; Zhao, B.; Zhao, X. Q.; Cheng, P.; Liao, D. Z.; Yan, S. P. Inorg. Chem. 2006, 45, 5980. https://doi.org/10.1021/ic060550j
  64. Aghabozorg, H.; Motieiyan, E.; Salimi, A. R.; Mirzaei, M.; Manteghi, F.; Shokrollahi, A.; Derki, S.; Ghadermazi, M.; Sheshmani, S.; Eshtiagh-Hosseini, H. Polyhedron 2010, 29, 1453. https://doi.org/10.1016/j.poly.2010.01.027
  65. Hubert-Pfalzgraf, L. G. New J. Chem. 1995, 19, 727
  66. Hubert-Pfalzgraf, L. G.; Guillon, H. Appl. Organomet. Chem. 1998, 12, 321. https://doi.org/10.1002/(SICI)1099-0739(199805)12:5<321::AID-AOC724>3.0.CO;2-E
  67. Pang, M.; Meng, G. Y.; Xin, H. W.; Chen, C. S.; Peng, D. K.; Lin, Y. S. Thin Solid Films 1998, 324, 89. https://doi.org/10.1016/S0040-6090(97)01215-7
  68. Daniele, S.; Hubert-Pfalzgraf, L. G.; Perrin, M. Polyhedron 2002, 21, 1985. https://doi.org/10.1016/S0277-5387(02)01005-7
  69. Asakura, K.; Imamoto, T. Bull. Chem. Soc. Jpn. 2001, 74, 731. https://doi.org/10.1246/bcsj.74.731
  70. Berthet, J.-C.; Nierlich, M.; Ephritikhine, M. Polyhedron 2003, 22, 3475. https://doi.org/10.1016/j.poly.2003.09.008

Cited by

  1. Complex formation equilibria between aluminum(III), gadolinium(III) and yttrium(III) ions and some fluoroquinolone ligands. Potentiometric and spectroscopic study vol.68, pp.24, 2015, https://doi.org/10.1080/00958972.2015.1089535
  2. 4-Quinolone Derivatives and Their Activities Against Gram-negative Pathogens vol.55, pp.9, 2018, https://doi.org/10.1002/jhet.3244