DOI QR코드

DOI QR Code

Design, Synthesis and Catalytic Property of L-Proline Derivatives as Organocatalysts for Direct Aldol Reaction

  • Wang, Lei ;
  • Tang, Ruiren ;
  • Yang, Hua
  • Received : 2013.06.02
  • Accepted : 2013.08.28
  • Published : 2013.10.20

Abstract

A series of chiral prolinamide compounds with pyridine-2, 6-dicarboxylic acid moieties derived from L-proline have been designed and synthesized, their catalytic properties for direct asymmetric aldol reactions were also studied in this article. These catalysts gave the aldol product in high yield (87%) and high enantioselectivity, up to 85%, of the anti-structure at room temperature but gave disappointing results at a lower temperature or when additive was added. Conditions, including solvents, temperature and additives were screened for the reactions. Moreover, the influence of presence of water on yield and stereoselectivity was also discussed.

Keywords

Amides;Asymmetric catalysis;Asymmetric synthesis;Stereoselectivity;Stereoselective synthesis

References

  1. Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615-1621. https://doi.org/10.1021/jo00925a003
  2. Hajos, Z. G.; Parrish, D. R. Organic Syntheses; Wiley: New York, 1990; Vol. 7, pp 363-368.
  3. Hoang, L.; Bahmanyar, S.; Houk, K. N.; List, B. J. Am. Chem. Soc. 2003, 125, 16-17. https://doi.org/10.1021/ja028634o
  4. Cozzi, P. G.; Hilgraf, R.; Zimmermann, N. Eur. J. Org. Chem. 2007, 5969-5994.
  5. Denissova, I.; Barriault, L. Tetrahedron 2003, 59, 10105-10146. https://doi.org/10.1016/j.tet.2003.10.039
  6. Bella, M.; Gasperi, T. Synthesis 2009, 1583-1614.
  7. Rutter, W. J. Fed. Proc. 1964, 23, 1248-1257.
  8. Barbas, C. F. III. Angew. Chem. 2008, 47(1), 42-47. https://doi.org/10.1002/anie.200702210
  9. List, B.; Lerner, R. A.; Barbas, C. F. III. J. Am. Chem. Soc. 2000, 122, 2395-2396. https://doi.org/10.1021/ja994280y
  10. Ramachary, D. B.; Sakthidevi, R. Chemistry-A European Journal 2009, 15, 4516-4522. https://doi.org/10.1002/chem.200900066
  11. Kotsuki, H.; Ikishima, H.; Okuyama, A. Heterocycles 2008, 75, 493-529. https://doi.org/10.3987/REV-07-620
  12. Guillena, G.; Najera, C.; Ramon, D. J. Tetrahedron: Asymmetry 2007, 18, 2249-2293. https://doi.org/10.1016/j.tetasy.2007.09.025
  13. Northrup, A. B.; MacMillan, D. W. C. Science 2004, 305, 1752-1755. https://doi.org/10.1126/science.1101710
  14. Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798-6799. https://doi.org/10.1021/ja0262378
  15. Dondoni, A.; Massi, A. Angew. Chem. 2008, 47, 4338-4360.
  16. Longbottom, D. A.; Franckevicius, V.; Kumarn, S.; Oelke, A. J.; Wascholowski, V.; Ley, S. V. Aldrichim. Acta 2008, 41, 3-11.
  17. Enders, D.; Grondal, C. Angew. Chem. 2007, 46, 1570-1581. https://doi.org/10.1002/anie.200603129
  18. Lelias, G.; MacMillian, D. W. C. Aldrichim. Acta 2006, 39, 79-87.
  19. Houk, K. N.; List, B. Eds. Acc. Chem. Res. 2004, 37, 487-631. https://doi.org/10.1021/ar040216w
  20. Kotsuki, H.; Ikishima, H.; Okuyama, A. Heterocycles 2008, 75, 493-529. https://doi.org/10.3987/REV-07-620
  21. Guillena, G.; Najera, C.; Ramon, D. J. Tetrahedron: Asymmetry 2007, 18, 2249-2293. https://doi.org/10.1016/j.tetasy.2007.09.025
  22. Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F. III. J. Am. Chem. Soc. 2001, 123, 5260-5267. https://doi.org/10.1021/ja010037z
  23. Orsini, F.; Pelizzoni, F.; Forte, M.; Destro, R.; Gariboldi, P. Tetrahedron 1998, 44, 519-541.
  24. Hayashi, Y.; Sumiya, T.; Takahashi, J.; Gotoh, H.; Urushima, T.; Shoji, M. Angew. Chem., Int. Ed. 2006, 45, 958-961. https://doi.org/10.1002/anie.200502488
  25. Aratake, S.; Itoh, T.; Okano, T.; Nagae, N.; Sumiya, T.; Shoji, M.; Hayashi, Y. Chem. Eur. J. 2007, 13, 10246-10256. https://doi.org/10.1002/chem.200700363
  26. Huang, J.; Zhang, X.; Armstrong, D. W. Angew. Chem., Int. Ed. 2007, 46, 9073-9077. https://doi.org/10.1002/anie.200703606
  27. Tellado, F. G.; Goswami, S.; Chang, S. K.; Geib, S. J.; Hamilton, A. D. J. Am. Chem. Soc. 1990, 112, 7393-7394. https://doi.org/10.1021/ja00176a048
  28. Tang, Z.; Cun, L. F.; Cui, X. Org. Lett. 2006, 8, 1263-1266. https://doi.org/10.1021/ol0529391
  29. Yang, H.; Rich, G. Carter. Synlett. 2010, 19, 2827-2838.
  30. Yang, H.; Mahapatra, S.; Cheong, P. Y. H.; Carter, R. G. J. Org. Chem. 2010, 75, 72-79.
  31. Zhang, Z. G.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 1187-1198. https://doi.org/10.1039/b801793j
  32. Liu, J.; Li, P. H.; Zhang, Y. C.; Ren, K.; Wang, L.; Wang, G. W. Chirality 2010, 22, 432-441.
  33. Xacobe, C. C.; Miquel, A. P. Adv. Synth Catal. 2011, 1, 113-124.
  34. Carsten, S.; Uwe, M. Chem. Eur. J. 2005, 11, 1109-1118. https://doi.org/10.1002/chem.200400652
  35. Dong, F. S.; Chuan, X. Z.; Ju. X. W. Tetrahedron: Asymmetry 2009, 20, 2390-2396. https://doi.org/10.1016/j.tetasy.2009.09.019
  36. Wu, C. L.; Fu, X. C.; Li, S. Tetrahedron: Asymmetry 2011, 20, 1063-1073.
  37. Michael, K.; Patrick, G. D.; Claire, M. L. Tetrahedron: Asymmetry 2011, 22, 1423-1433. https://doi.org/10.1016/j.tetasy.2011.07.016
  38. Swapandeep, S. C.; Sarbjit, S.; Dinesh, M. Tetrahedron: Asymmetry 2008, 19, 2276-2284. https://doi.org/10.1016/j.tetasy.2008.09.020
  39. Yang, H.; Rich, G. C.; Lev, N. Z. J. Am. Chem. Soc. 2008, 130, 9238-9239. https://doi.org/10.1021/ja803613w

Cited by

  1. Chiral Pyrrolidine Bridged Polyhedral Oligomeric Silsesquioxanes as Heterogeneous Catalysts for Asymmetric Michael Additions vol.148, pp.2, 2018, https://doi.org/10.1007/s10562-017-2286-z