Neuro-Fuzzy Control of Interior Permanent Magnet Synchronous Motors: Stability Analysis and Implementation

DOI QR코드

DOI QR Code

Dang, Dong Quang;Vu, Nga Thi-Thuy;Choi, Han Ho;Jung, Jin-Woo

  • 투고 : 2013.06.01
  • 심사 : 2013.08.12
  • 발행 : 2013.11.01

초록

This paper investigates a robust neuro-fuzzy control (NFC) method which can accurately follow the speed reference of an interior permanent magnet synchronous motor (IPMSM) in the existence of nonlinearities and system uncertainties. A neuro-fuzzy control term is proposed to estimate these nonlinear and uncertain factors, therefore, this difficulty is completely solved. To make the global stability analysis simple and systematic, the time derivative of the quadratic Lyapunov function is selected as the cost function to be minimized. Moreover, the design procedure of the online self-tuning algorithm is comparatively simplified to reduce a computational burden of the NFC. Next, a rotor angular acceleration is obtained through the disturbance observer. The proposed observer-based NFC strategy can achieve better control performance (i.e., less steady-state error, less sensitivity) than the feedback linearization control method even when there exist some uncertainties in the electrical and mechanical parameters. Finally, the validity of the proposed neuro-fuzzy speed controller is confirmed through simulation and experimental studies on a prototype IPMSM drive system with a TMS320F28335 DSP.

키워드

Interior permanent magnet synchronous motor (IPMSM);Linear matrix inequality (LMI);Neuro-fuzzy control (NFC);Robustness;Speed control;System uncertainties

참고문헌

  1. V. Q. Leu, H. H. Choi, and J. W. Jung, "LMI-based sliding mode speed tracking control design for surface-mounted permanent magnet synchronous motors," J. Elect. Eng. Technol., Vol. 7, No. 4, pp. 513-523, Jul. 2012. https://doi.org/10.5370/JEET.2012.7.4.513
  2. Y. H. Kim, W. K. Kim, and S. Kim, "Maximum power control of IPMSM considering nonlinear cross-magnetization effects," J. Elect. Eng. Technol., Vol. 7, No. 6, pp. 940-947, Nov. 2012. https://doi.org/10.5370/JEET.2012.7.6.940
  3. H. Lin, K. Y. Hwang, and B. I. Kwon, "An improved flux observer for sensorless permanent magnet synchronous motor drives with parameter identification," J. Elect. Eng. Technol., Vol. 8, No. 3, pp. 516-523, May 2013. https://doi.org/10.5370/JEET.2013.8.3.516
  4. M. Sekour, K. Hartani, A. Draou, and A. Allali, "Sensorless fuzzy direct torque control for high performance electric vehicle with four in-wheel motors," J. Elect. Eng. Technol., Vol. 8, No. 3, pp. 530-543, May 2013. https://doi.org/10.5370/JEET.2013.8.3.530
  5. R. S. Rebeiro and M. N. Uddin, "Performance analysis of an FLC-based online adaptation of both hysteresis and PI controllers for IPMSM drive," IEEE Trans. Ind. Appl., Vol. 48, No. 1, pp. 12-19, Jan./Feb. 2012. https://doi.org/10.1109/TIA.2011.2175876
  6. C. K. Lin, T. H. Liu, and S. H. Yang, "Nonlinear position controller design with input-output linearisation technique for an interior permanent magnet synchronous motor control system," IET Power. Electron., Vol. 1, No. 1, pp. 14-26, Mar. 2008. https://doi.org/10.1049/iet-pel:20070177
  7. M. A. Rahman, M. D. Vilathgamuwa, M. N. Uddin, and K. J. Tseng, "Nonlinear control of interior permanent-magnet synchronous motor," IEEE Trans. Ind. App., Vol. 39, No. 2, pp. 408-416, Mar./Apr. 2003. https://doi.org/10.1109/TIA.2003.808932
  8. S. Wu, Y. Wang, and S. Cheng, "Optimal reset control design for current control and uncertainties estimation in permanent magnet synchronous," IET Electr. Power. Appl., Vol. 6, No. 2, pp. 122-132, Feb. 2012. https://doi.org/10.1049/iet-epa.2011.0210
  9. R. Errouissi, M. Ouhrouche, W. H. Chen, and A. M. Trzynadlowski, "Robust cascaded nonlinear predictive control of a permanent magnet synchronous motor with antiwindup compensator," IEEE Trans. Ind. Electron., Vol. 59, No. 8, pp. 3078-3088, Aug. 2012. https://doi.org/10.1109/TIE.2011.2167109
  10. R. Errouissi, M. Ouhrouche, W. H. Chen, and A. M. Trzynadlowski, "Robust nonlinear predictive controller for permanent magnet synchronous motors with an optimized cost function," IEEE Trans. Ind. Electron., Vol. 59, No. 7, pp. 2849-2858, Jul. 2012. https://doi.org/10.1109/TIE.2011.2157276
  11. H. Chaoui and P. Sicard, "Adaptive fuzzy logic control of permanent magnet synchronous machines with nonlinear friction," IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 1123-1133, Feb. 2012. https://doi.org/10.1109/TIE.2011.2148678
  12. M. N. Uddin and R. S. Rebeiro, "Online efficiency optimization of a fuzzy logic controller-based IPMSM drive," IEEE Trans. Ind. App., Vol. 47, No. 2, pp. 1043-1050, Mar./Apr. 2011. https://doi.org/10.1109/TIA.2010.2103293
  13. G. Foo and M. F. Rahman, "Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding mode observer and HF signal injection," IEEE Trans. Ind. Electron., Vol. 57, No. 4, pp. 1270-1278, Apr. 2010. https://doi.org/10.1109/TIE.2009.2030820
  14. C. K. Lin, T. H. Liu, M. Y. Wei, L. C. Fu, and C. F. Hsiao, "Design and implementation of a chatteringfree nonlinear sliding mode controller for interior permanent magnet synchronous drive systems," IET Electr. Power. Appl., Vol. 6, No. 6, pp. 332-344, Jul. 2012. https://doi.org/10.1049/iet-epa.2011.0040
  15. K. Liu, Z. Q. Zhu, and D. A. Stone, "Parameter estimation for condition monitoring of PMSM stator winding and rotor permanent magnets," IEEE Trans. Ind. Electron., Vol. 60, No. 12, pp. 5902-5913, Dec. 2013. https://doi.org/10.1109/TIE.2013.2238874
  16. Y. Feng, X. Yu, and F. Han, "High-order terminal sliding-mode observer for parameter estimation of a permanent-magnet synchronous motor," IEEE Trans. Ind. Electron., Vol. 60, No. 10, pp. 4272-4280, Oct. 2013. https://doi.org/10.1109/TIE.2012.2213561
  17. M. Tursini, F. Parasiliti, and D. Zhang, "Real-time gain tuning of PI controllers for high-performance PMSM drives," IEEE Trans. Ind. App., Vol. 38, No. 4, pp. 1018-1026, Jul./Aug. 2002. https://doi.org/10.1109/TIA.2002.800564
  18. M. N. Uddin, M. A. Abido, and M. A. Rahman, "Development and implementation of a hybrid intelligent controller for interior permanent magnet synchronous motor dives," IEEE Trans. Ind. App., Vol. 40, No. 1, pp. 68-76, Jan./Feb. 2004. https://doi.org/10.1109/TIA.2003.821797
  19. M. Khan and M. A. Rahman, "Implementation of a new wavelet controller for interior permanent magnet motor drives," IEEE Trans. Ind. App., Vol. 44, No. 6, pp. 1957-1965, Nov./Dec. 2008. https://doi.org/10.1109/TIA.2008.2006317
  20. M. M. I. Chy and M. N. Uddin, "Development and implementation of a new adaptive intelligent speed controller for IPMSM drive," IEEE Trans. Ind. App., Vol. 45, No. 3, pp. 1106-1115, May/Jun. 2009. https://doi.org/10.1109/TIA.2009.2018918
  21. M. A. S. K. Khan and M. A. Rahman, "A novel neuro wavelet-based self tuned wavelet controller for IPM motor drives," IEEE Trans. Ind. App., Vol. 46, No. 3, pp. 1194-1203, Mar. 2010. https://doi.org/10.1109/TIA.2010.2045213
  22. F. F. M. El-Sousy, "Robust adaptive $H^{\infty}$ position control via a wavelet neural network for a DSP-based permanent magnet synchronous motor servo drive system," IET Electr. Power. Appl., Vol. 4, No. 5, pp. 333-347, May 2010. https://doi.org/10.1049/iet-epa.2009.0156
  23. F. F. M. El-Sousy, "Robust wavelet neural network sliding mode control system for permanent magnet synchronous motor drive," IET Electr. Power. Appl., Vol. 5, No. 1, pp. 113-132, Feb. 2011. https://doi.org/10.1049/iet-epa.2009.0229
  24. F. Fernandez-Bernal, A. Garcia-Cerrada, and R. Faure, "Determination of parameters in interior permanent-magnet synchronous motors with iron losses without torque measurement," IEEE Trans. Ind. App., Vol. 37, No. 5, pp. 1265-1272, Sep./Oct. 2001. https://doi.org/10.1109/28.952501
  25. P. H. Mellor, M. A. Al-Taee, and K. J. Binns, "Open loop stability characteristics of synchronous drive incorporating high field permanent magnet motor," IEE Proceedings-B, Vol. 138, No. 4, pp. 175-184, Jul. 1991.

피인용 문헌

  1. 1. PMSM Servo Drive for V-Belt Continuously Variable Transmission System Using Hybrid Recurrent Chebyshev NN Control System vol.10, pp.1, 2015, doi:10.5370/JEET.2013.8.6.1439
  2. 2. Sliding Mode Disturbance Observer-Based Fractional Second-Order Nonsingular Terminal Sliding Mode Control for PMSM Position Regulation System vol.2015, 2015, doi:10.5370/JEET.2013.8.6.1439
  3. 3. θ-D Approximation Technique for Nonlinear Optimal Speed Control Design of Surface-Mounted PMSM Drives vol.20, pp.4, 2015, doi:10.5370/JEET.2013.8.6.1439
  4. 4. Online Parameter Identification for Model-Based Sensorless Control of Interior Permanent Magnet Synchronous Machine vol.32, pp.6, 2017, doi:10.5370/JEET.2013.8.6.1439
  5. 5. Fuzzy Model Predictive Direct Torque Control of IPMSMs for Electric Vehicle Applications vol.22, pp.4, 2017, doi:10.5370/JEET.2013.8.6.1439
  6. 6. Finite Set Model Predictive Control of Interior PM Synchronous Motor Drives With an External Disturbance Rejection Technique vol.22, pp.2, 2017, doi:10.5370/JEET.2013.8.6.1439
  7. 7. Adaptive PID Speed Control Design for Permanent Magnet Synchronous Motor Drives vol.30, pp.2, 2015, doi:10.5370/JEET.2013.8.6.1439
  8. 8. A Nonlinear Sliding Mode Controller for IPMSM Drives with an Adaptive Gain Tuning Rule vol.15, pp.3, 2015, doi:10.5370/JEET.2013.8.6.1439
  9. 9. Sliding-Mode Observer for IPMSM Sensorless Control by MTPA Control Strategy vol.49, pp.29, 2016, doi:10.5370/JEET.2013.8.6.1439

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)