DOI QR코드

DOI QR Code

An efficient method for the compressive behavior of FRP-confined concrete cylinders

  • Fan, Xinglang (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology) ;
  • Wu, Zhimin (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology) ;
  • Wu, Yufei (Department of Civil and Architectural Engineering, City University of Hong Kong) ;
  • Zheng, Jianjun (School of Civil Engineering and Architecture, Zhejiang University of Technology)
  • Received : 2012.06.11
  • Accepted : 2013.05.24
  • Published : 2013.10.25

Abstract

Fiber reinforced polymer (FRP) jackets have been widely used as an effective tool for the strengthening and rehabilitation of concrete structures, especially damaged concrete columns. Therefore, a clear understanding of the compressive behavior of FRP-confined concrete is essential. The objective of this paper is to develop a simple efficient method for predicting the compressive strength, the axial strain at the peak stress, and the stress-strain relationship of FRP-confined concrete. In this method, a compressive strength model is established based on Jefferson's failure surface. With the proposed strength model, the strength of FRP-confined concrete can be estimated more precisely. The axial strain at the peak stress is then evaluated using a damage-based formula. Finally, a modified stress-strain relationship is derived based on Lam and Teng's model. The validity of the proposed compressive strength and strain models and the modified stress-strain relationship is verified with a wide range of experimental results collected from the research literature and obtained from the self-conducted test. It can be concluded that, as a competitive alternative, the proposed method can be used to predict the compressive behavior of FRP-confined concrete with reasonable accuracy.

References

  1. Ahmad, S.M., Khaloo, A.R. and Irshaid, A. (1991), "Behavior of concrete spirally confined by fiberglass filaments", Mag. Concr. Res., 43(156), 143-148. https://doi.org/10.1680/macr.1991.43.156.143
  2. Almusallam, T.H. (2007), "Behavior of normal and high-strength concrete cylinders confined with E-glass/epoxy composite laminates", Compos. B: Eng., 38(5-6), 629-639. https://doi.org/10.1016/j.compositesb.2006.06.021
  3. Berthet, J.F., Ferrier, E. and Hamelin, P. (2005), "Compressive behavior of concrete externally confined by composite jackets. Part A: experimental study", Constr. Build. Mater., 19(3), 223-232. https://doi.org/10.1016/j.conbuildmat.2004.05.012
  4. Campione, G. and Miraglia, N. (2003), "Strength and strain capacities of concrete compression members reinforced with FRP", Cem. Concr. Compos., 25(1), 31-41. https://doi.org/10.1016/S0958-9465(01)00048-8
  5. Carey, S.A. and Harries, K.A. (2005), "Axial behavior and modeling of confined small-, medium-, and large-scale circular sections with carbon fiber-reinforced polymer Jackets", ACI Struct. J., 102(4), 596-604.
  6. Carrasquilio, R.L., Nilson, A.H. and Slate, F. (1981), "Properties of high strength concrete subject to short-term loads", ACI Journal Proceedings, 78(3), 171-178.
  7. Cui, C. and Sheikh, S.A. (2010), "Experimental study of normal- and high-strength concrete confined with fiber-reinforced polymers", J. Compos. Constr., 14(5), 553-561. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000116
  8. De Lorenzis, L. and Tepfers, R. (2003), "Comparative study of models on confinement of concrete cylinders with fiber-Reinforced polymer composites", J. Compos. Constr., 7(3), 219-237. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:3(219)
  9. De Nicolo, B., Pani, L. and Pozzo, E. (1994), "Strain of concrete at peak compressive stress for a wide range of compressive strengths", Mater. Struct., 27(4), 206-210. https://doi.org/10.1007/BF02473034
  10. Demers, M and Neale, K.W. (1999), "Confinement of reinforced concrete columns with fibre-reinforced compostie sheets-an experimental study", Can. J. Civil Eng., 26(2), 226. https://doi.org/10.1139/l98-067
  11. Fahmy, M.F.M. and Wu, Z. (2010), "Evaluating and proposing models of circular concrete columns confined with different FRP composites", Compos. B: Eng., 41(3), 199-213. https://doi.org/10.1016/j.compositesb.2009.12.001
  12. Fam, A.Z. and Rizkalla, S.H. (2001), "Behavior of axially loaded concrete-filled circular fiber-reinforced polymer Tubes", ACI Struct. J., 398(3), 280-289.
  13. Fam, A., Flisak, B. and Rizkalla, S. (2003), "Experimental and analytical modeling of concrete-filled fiber-reinforced polymer tubes subjected to combined bending and axial loads", ACI Struct. J., 100(4), 499-509.
  14. Fardis, M.N. and Khalili, H. (1982), "FRP-encased concrete as a structural material", Mag. Concr. Res., 34(121), 191-202. https://doi.org/10.1680/macr.1982.34.121.191
  15. Harries, K.A. and Kharel, G. (2002), "Behavior and modeling of concrete subject to variable confining pressure", ACI Mater. J., 99(2), 180-189.
  16. Harries, K.A. and Kharel, G. (2003), "Experimental investigation of the behavior of variably confined concrete", Cem. Concr. Res., 33(6), 873-880. https://doi.org/10.1016/S0008-8846(02)01086-4
  17. Ilki, A., Peker, O., Karamuk, E., Demir, C. and Kumbasar, N. (2008), "FRP retrofit of low and medium strength circular and rectangular reinforced concrete columns", J. Mater. Civil Eng., 20(2), 169-188. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:2(169)
  18. Jefferson, A.D. (2003), "Craft-a plastic-damage-contact model for concrete. I. Model theory and thermodynamic considerations", Int. J. Solids Struct., 40(22), 5973-5999. https://doi.org/10.1016/S0020-7683(03)00390-1
  19. Karabinis, A.I., Rousakis, T.C. and Manolitsi, G.E. (2008), "3D finite-element analysis of substandard RC columns strengthened by fiber-reinforced polymer sheets", J. Compos. Constr., 12(5), 531-540. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:5(531)
  20. Karabinis, A.I. and Rousakis, T.C. (2001), "Carbon FRP confined concrete elements under axial load", Proceedings of the International Conference on FRP composites in Civil Engineering, HongKong, December.
  21. Karbhari, V.M. and Gao, Y. (1997), "Composite jacketed concrete under uniaxial compression-verification of simple design equations", J. Mater. Civil Eng., 9(4), 185-193. https://doi.org/10.1061/(ASCE)0899-1561(1997)9:4(185)
  22. Kono, S., Inazumi, M. and Kaku, T. (1998), "Evaluation of confining effects of CFRP sheets on reinforced concrete members", Second International Conference on Composites in Infrastructure, Tucson, Arizona, January.
  23. Kumutha, R., Vaidyanathan, R. and Palanichamy, M.S. (2007), "Behaviour of reinforced concrete rectangular columns strengthened using GFRP", Cem. Concr. Compos., 29(8), 609-615. https://doi.org/10.1016/j.cemconcomp.2007.03.009
  24. Kupfer, H., Hilsdorf, H.K. and Rusch, H. (1969), "Behavior of Concrete Under Biaxial Stresses", ACI Journal Proceedings, 66(8), 656-666.
  25. La Tegola, A. and Manni, O. (1999), "Experimental investigation on concrete confined by fiber reinforced polymer and comparison with theoretical model", 4th international symposium on fiber reinforced reinforcement for reinforced concrete structures, Baltimore, August.
  26. Lam, L. and Teng, J.G. (2001), "A new stress-strain model for FRP-confined concrete", Proceedings of the International Conference on FRP composites in Civil Engineering, HongKong, December.
  27. Lam, L. and Teng, J.G. (2003), "Design-oriented stress-strain model for FRP-confined concrete", Constr. Build. Mater., 17(6-7), 471-489. https://doi.org/10.1016/S0950-0618(03)00045-X
  28. Lam, L. and Teng, J.G. (2004), "Ultimate condition of fiber reinforced polymer-confined concrete", J. Compos. Constr., 8(6), 539-548. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(539)
  29. Lau, K. and Zhou, L. (2001), "Mechanical performance of composite-strengthened concrete structures", Compos. B: Eng., 32(1), 21-31. https://doi.org/10.1016/S1359-8368(00)00043-3
  30. Lee, C. and Hegemier, G. A. (2009), "Model of FRP-Confined concrete cylinders in axial compression", J. Compos. Constr., 13(5), 442-454. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000029
  31. Li, G. (2006). "Experimental study of FRP confined concrete cylinders", Eng. Struct., 28(7), 1001-1008. https://doi.org/10.1016/j.engstruct.2005.11.006
  32. Liang, M., Wu, Z., Ueda, T. and Zheng, J. (2012), "Experiment and modeling on axial behavior of CFRP-confined concrete cylinders with different sizes", J. Reinf. Plast. Comp., 31(6), 389-403. https://doi.org/10.1177/0731684412439347
  33. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
  34. Mandal, S., Hoskin, A. and Fam, A. (2005), "Influence of concrete strength on confinement effectiveness of fiber-reinforced polymer circular jackets", ACI Struct. J., 102(3), 383-392.
  35. Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  36. Mastrapa, J.C. (1997), "The effect of construction bond on confinement with FRP composites", University of Central Florida, Orlando,Florida.
  37. Matthys, S., Toutanji, H., Audenaert, K. and Taerwe, L. (2005), "Axial load behavior of large-scale columns confined with fiber-reinforced polymer composites", ACI Struct. J., 102(2), 258-267.
  38. Matthys, S., Toutanji, H. and Taerwe, L. (2006), "Stress-strain behavior of large-scale circular columns cConfined with FRP composites", J. Struct. Eng., 132(1), 123-133. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(123)
  39. Mirmiran, A., Shahawy, M., Samaan, M., Echary, H.E., Mastrapa, J.C. and Pico, O. (1998), "Effect of column parameters on FRP-confined concrete", J. Compos. Constr., 2(4), 175-185. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175)
  40. Mirmiran, A. and Shahawy, M. (1997), "Behavior of concrete columns confined by fiber composites", J. Struct. Eng., 123(5), 583-590. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(583)
  41. Miyauchi, K., Inoue, S., Kuroda, T. and Kobayashi, A. (1999), "Strengthening effects with carbon fiber sheet for concrete column", Proceedings of the Japan Concrete Institute, 21(3), 1453-1458.
  42. Miyauchi, K., Nishibayashi, S. and Inoue, S. (1997), "Estimation of strengthening effects with carbon fiber sheet for concrete column", Proceedings of Third International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Sapporo, Japan, October.
  43. Mousavi, S.M., Alavi, A.H., Gandomi, A.H., Esmaeili, M.A. and Gandomi, M. (2010), "A data mining approach to compressive strength of CFRP-confined concrete cylinders", Struct. Eng. Mech., 36(6), 759-783. https://doi.org/10.12989/sem.2010.36.6.759
  44. Nanni, A. and Bradford, N.M. (1995), "FRP jacketed concrete under uniaxial compression", Constr. Build. Mater., 9(2), 115-124. https://doi.org/10.1016/0950-0618(95)00004-Y
  45. Pantazopoulou, S.J. and Mills, R.H. (1995), "Microstructural aspects of the mechanical response of plain concrete", ACI Mater. J., 92(6), 605-616.
  46. Papanikolaou, V.K. and Kappos, A.J. (2007), "Confinement-sensitive plasticity constitutive model for concrete in triaxial compression", Int. J. Solids Struct., 44(21), 7021-7048. https://doi.org/10.1016/j.ijsolstr.2007.03.022
  47. Pessiki, S., Harries, K.A., Kestner, J.T., Sause, R. and Ricles, J.M. (2001), "Axial behavior of reinforced concrete columns confined with FRP Jackets", J. Compos. Constr., 5(4), 237-245. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(237)
  48. Purba, B.K. and Mufti, A.A. (1999), "Investigation of the behavior of circular concrete columns reinforced with carbon fiber reinforced polymer (CFRP) jackets", Can. J. Civil Eng., 26(5), 590. https://doi.org/10.1139/l99-022
  49. Razvi, S. and Saatcioglu, M. (1999), "Confinement model for high-strength concrete", J. Struct. Eng., 125(3), 281-289. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(281)
  50. Realfonzo, R. and Napoli, A. (2011), "Concrete confined by FRP systems: confinement efficiency and design strength models", Compos. B: Eng., 42(4), 736-755. https://doi.org/10.1016/j.compositesb.2011.01.028
  51. Richard, R.M. and Abbott, B.J. (1975), "Versatile elastic-plastic stress-strain formula", J. Struct. Eng., 101(4): 511-515.
  52. Richart, F. E., Brandtzaeg, A. and Brown, R. L. (1928), "A study of the failure of concrete under combined compressive stresses", University of Illinois (Urbana-Champaign Campus)., Engineering Experiment Station. Bulletin no. 185, University of Illinois at Urbana Champaign.
  53. Rochette, P. and Labossiere, P. (2000), "Axial testing of rectangular column models confined with composites", J. Compos. Constr., 4(3), 129-136. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:3(129)
  54. Rousakis, T.C. and Karabinis, A.I. (2008), "Substandard reinforced concrete members subjected to compression - FRP confining effects", Mater. Struct., 41(9), 1595-1611. https://doi.org/10.1617/s11527-008-9351-4
  55. Saadatmanesh, H., Ehsani, M.R. and Li, M.W. (1994), "Strength and ductility of concrete columns externally reinforced with fiber composite straps", ACI Struct. J., 91(4), 434-447.
  56. Saafi, M., Toutanji, H. and Li, Z. (1999), "Behavior of concrete columns confined with fiber reinforced polymer tubes", ACI Mater. J., 96(4), 500-509.
  57. Samaan, M., Mirmiran, A. and Shahawy, M. (1998), "Model of concrete confined by fiber composites", J. Struct. Eng., 124(9), 1025-1031. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025)
  58. Shahawy, M., Mirmiran, A. and Beitelman, T. (2000), "Tests and modeling of carbon-wrapped concrete columns", Compos. B: Eng., 31(6-7), 471-480. https://doi.org/10.1016/S1359-8368(00)00021-4
  59. Shehata, I., Carneiro, L. and Shehata, L. (2002), "Strength of short concrete columns confined with CFRP sheets", Mater. Struct., 35(1), 50-58. https://doi.org/10.1007/BF02482090
  60. Silva, M. and Rodrigues, C. (2006), "Size and relative stiffness effects on compressive failure of concrete Columns Wrapped with Glass FRP", J. Mater. Civil Eng., 18(3), 334-342. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:3(334)
  61. Smith, S. T., Kim, S. J., and Zhang, H. (2010), "Behavior and effectiveness of FRP wrap in the confinement of large concrete cylinders", J. Compos. Constr., 14(5), 573-582. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000119
  62. Spoelstra, M. R. and Monti, G. (1999), "FRP-confined concrete model", J. Compos. Constr., 3(3), 143-150. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143)
  63. Teng, J.G., Huang, Y.L., Lam, L. and Ye, L.P. (2007), "Theoretical model for fiber-reinforced polymer-confined concrete", J. Compos. Constr., 11(2), 201-210. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201)
  64. Teng, J.G., Jiang, T., Lam, L. and Luo, Y.Z. (2009), "Refinement of a design-oriented stress--strain model for FRP-confined concrete", J. Compos. Constr., 13(4), 269-278. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000012
  65. Thériault, M., Neale, K. and Claude, S. (2004), "Fiber-Reinforced Polymer-Confined Circular Concrete Columns: Investigation of Size and Slenderness Effects", J. Compos. Constr., 8(4), 323-331. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:4(323)
  66. Toutanji, H. (1999). "Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets", ACI Mater. J., 96(3), 397-404.
  67. Vintzileou, E. and Panagiotidou, E. (2008), "An empirical model for predicting the mechanical properties of FRP-confined concrete", Constr. Build. Mater., 22(5), 841-854. https://doi.org/10.1016/j.conbuildmat.2006.12.009
  68. Wang, L. and Wu, Y. (2008), "Effect of corner radius on the performance of CFRP-confined square concrete columns: Test", Eng. Struct., 30(2), 493-505. https://doi.org/10.1016/j.engstruct.2007.04.016
  69. Watanabe, K., Nakamura, H., Honda, Y., Toyoshima, M., Iso, M., Fujimaki, T., Kaneto, M. and Shirai, N. (1997), "Confinement effect of FRP sheet on strength and ductility of concrete cylinders under uniaxial compression", Proceedings of Third International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Sapporo, Japan.
  70. William, K.J. and Warnke, E.P. (1974), "Constitutive model for triaxial behaviour of concrete", Concrete structures subjected to triaxaial stresses, International Association for Bridges and Structural Engineering, Bergamo, Italy.
  71. Wu, G., Lü, Z.T. and Wu, Z.S. (2006), "Strength and ductility of concrete cylinders confined with FRP composites", Constr. Build. Mater., 20(3), 134-148. https://doi.org/10.1016/j.conbuildmat.2005.01.022
  72. Wu, Y. and Wang, L. (2009), "Unified Strength Model for Square and Circular Concrete Columns Confined by External Jacket", J. Struct. Eng., 135(3), 253-261. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(253)
  73. Wu, Y. and Zhou, Y. (2010), "Unified strength model based on hoek-brown failure criterion for circular and square concrete columns confined by FRP", J. Compos. Constr., 14(2), 175-184. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000062
  74. Xiao, Y. and Wu, H. (2000), "Compressive behavior of concrete confined by carbon fiber composite jackets", J. Mater. Civil Eng., 12(2), 139-146. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:2(139)
  75. Xiao, Y. and Wu, H. (2003), "Compressive behavior of concrete confined by various types of FRP composite jackets", J. Reinf. Plast. Comp., 22(13), 1187 -1201. https://doi.org/10.1177/0731684403035430
  76. Youssef, M.N., Feng, M.Q. and Mosallam, A.S. (2007), "Stress-strain model for concrete confined by FRP composites", Compos. B: Eng., 38(5-6), 614-628. https://doi.org/10.1016/j.compositesb.2006.07.020