DOI QR코드

DOI QR Code

Improvement of Abrasion and Debris on Styrene-Butadiene-Styrene Block Copolymer with Carboxylated SBR Latex and Zinc Oxide

카르복실화 SBR 라텍스와 산화아연을 이용한 SBS의 내마모성과 데브리스(debris) 개선 연구

  • Lee, Jin Hyok (Department of Polymer Engineering, Pusan National University) ;
  • Bae, Jong Woo (Rubber Research Team, Korea Institute of Footwear & Leather Technology) ;
  • Kim, Jung Su (Rubber Research Team, Korea Institute of Footwear & Leather Technology) ;
  • Yoon, Yoo-Mi (Rubber Research Team, Korea Institute of Footwear & Leather Technology) ;
  • Jo, Nam-Ju (Department of Polymer Engineering, Pusan National University)
  • 이진혁 (부산대학교 고분자공학과) ;
  • 배종우 (한국신발피혁연구원 혁신소재사업단 고무연구실) ;
  • 김정수 (한국신발피혁연구원 혁신소재사업단 고무연구실) ;
  • 윤유미 (한국신발피혁연구원 혁신소재사업단 고무연구실) ;
  • 조남주 (부산대학교 고분자공학과)
  • Received : 2013.07.15
  • Accepted : 2013.08.19
  • Published : 2013.09.30

Abstract

In this study, we observed the effect of carboxylated SBR latex and zinc oxide on styrene-butadiene-styrene( SBS) composites for improving abrasion and debris. SBS composite, which added only silica, showed poor mechanical properties, NBS abrasion, and debris, caused by strong filler-filler interaction of silica. In case of adding carboxylated SBR latex, mechanical properties, NBS abrasion and debris of SBS composite were improved. Because of carboxyl group of carboxylated SBR latex interacted with silanol group of silica. Both carboxylated SBR latex and zinc oxide were added, SBS composite showed highest mechanical properties, NBS abrasion, and debris by forming ion cluster between carboxylated SBR latex and zinc oxide. By FT-IR analysis, ion clusters were confirmed that observed zinc carboxylated group stretch peak at $1550{\sim}1650cm^{-1}$ range. SBS composite, SC-4, showed excellent mechanical properties ; tensile strength $156kgf/cm^2$, elongation 936%, tear strength 59.4kgf/cm ; and excellent abrasion characteristics ; NBS abrasion 338%. Also, debris of SC-4 was minimized and showed wave-shape in fracture surface.

References

  1. Y. Lee, J. Jeong, and J. Park, Elast. Compos., 45, 4, 245 (2010).
  2. E. J. Choi, J. H. Yoon, J. K. Jo, S. E. Shim, J. H. Yun, I. Kim, Elast. Compos., 45, 3, 170 (2010).
  3. P. Sae-oui, C. Sirisinha, U. Thepsuwan, K. Hatthapanit, Polym. Test., 23, 871, (2004). https://doi.org/10.1016/j.polymertesting.2004.05.008
  4. J. W. Ten Brinke, SC. Debnath, L.A.E.M. Reuvekamp, J.W.M. Noordermeer, Compos. Sci. Technol., 63, 1165 (2003). https://doi.org/10.1016/S0266-3538(03)00077-0
  5. H.D. Luginsland, J. Frohlich, A. Wehmeier, Rubber Chem. Technol., 75, 4, 563 (2002). https://doi.org/10.5254/1.3544984
  6. P. Sae-oui, C. Sirisinha, U. Thepsuwan, K. Hatthapanit, Eur. Polym. J., 42, 479 (2006). https://doi.org/10.1016/j.eurpolymj.2005.09.003
  7. Y. S. Choi, J. H. Lee, J. S. Kim, G. J. Kim, J. W. Bae, C. Y. Park, Autumn Academic Symposium of the Rubber Society of Korea, A-8, (2012).
  8. R. A. Weiss, J. A. Fitzerald and D. Kim, Macromolecules, 24, 1071 (1991). https://doi.org/10.1021/ma00005a015
  9. P. Antony, S. K. De, J. Macromol. Sci. Polym. Rev., C41, 41 (2001).
  10. S. Bagrodia, G. L. Wilkes and J. P. Kennedy, Polym. Eng. Sci., 26, 662 (1986). https://doi.org/10.1002/pen.760261004
  11. J. W. Bae, J. S. Kim, J. H. Lee, G. N. Kim, S. T. Oh, Y. H. Lee, H. D. Kim, Asian J. Chem., 25, 9, 5272 (2013)
  12. K. Pyo and C. Park, Elast. Compos., 46, 4, 324 (2011).
  13. A. C. M. Yang, J. E. Ayala, J. Campbell Scott, J. Mater. Sci., 26, 5826 (1991)
  14. B. A. Brozoski, M. M. Colemam, P. C. Painter, Macromolecules, 17, 230(1984). https://doi.org/10.1021/ma00132a019
  15. D. Kim, B.-H. Seo, H. Kim, H.-J. Paik, J. Kang, W. Kim, Elast. Compos., 47, 1, 54 (2012) https://doi.org/10.7473/EC.2012.47.1.054