Study on Self-Healing Asphalt Containing Microcapsule

마이크로캡슐이 내재된 자기치유 아스팔트에 관한 연구

  • Kwon, Young-Jin (Department of Polymer Engineering, The University of Suwon) ;
  • Hong, Young-Keun (Department of Polymer Engineering, The University of Suwon)
  • 권영진 (수원대학교 신소재공학과) ;
  • 홍영근 (수원대학교 신소재공학과)
  • Received : 2013.07.19
  • Accepted : 2013.08.12
  • Published : 2013.09.30


Microcapsules having healing agent were prepared in which 2,6-dimethylphenol (DMP) as a healing agent forms the core and melamine/formaldehyde resin forms the shell. Microcapsule-contained asphalts showed better mechanical properties than non-contained ones. And as the rest time passed the impact strength of microcapsule-contained asphalt was getting higher than that of asphalt without the microcapsule. As the rest time of 15 days passed, the original strength was restored. This tells that microcapsule-contained asphalt had the ability of self-healing. X-ray photos proved that DMP on asphalt fracture surface, which were burst out of the microcapsules when cracks occurred on asphalt, were polymerized to polyphenyleneoxide and this PPO covered the crack and healed the damage.


  1. Top 10 Most Promising Technology Trends 2013, from the World Economic Forum, Google, posted Feb 14, 2013.
  2. Self-healing Material, Wikipedia.
  3. J. H. Collins and M. G. Bouldin, "Long and Short Term Stability of Straight and Polymer Modified Asphalts", Rubber World, 206, 32 (1992).
  4. X. Lu and U. Isacsson, "Compatibility and Storage Stability of SBS Copolymer Modified Bitumen", Mater. Struct., 30, 618 (1997).
  5. P. Jew, J. A. Shimizu, M. Svazic and R. T. Woodhams, "Polyethylene-Modified Bitumen for Paving Applications", J. Appl. Polym. Sci., 31, 2685 (1986).
  6. O. Gonzalez, M. E. Munoz, A. Santamaria, M. Garcia-Morales, F. J. Navarro, and P. Partal, "Rheology and Stability of Bitumen/EVA blends", Eur. Polym. J., 40, 2365 (2004).
  7. G. Polacco, S. Berlincioni, D. Biondi, J. Stastna, and L. Zanzotto, "Asphalt Modification with Different Polyethylene-Based Polymers", Eur. Polym. J., 41, 2831 (2005).
  8. G. Wen, Y. Zhang, Y. Zhang, K. Sun, and Z. Chen, "Vulcanization Characteristics of Asphalt/SBS Blends in the Presence of Sulfur", J. Appl. Polym. Sci., 82, 989 (2001).
  9. J. S. Chen and C. C. Huang, "Fundamental Characterization of SBS-modified Asphalt Mixed with Sulfur", J. Appl. Polym. Sci., 103, 2817 (2007).
  10. A. Adedeji, T. Grunfelder, F. S. Bates, and C. W. Macosko, "Asphalt Modified by SBS Triblock Copolymer: Structures and Properties", Polym. Eng. Sci., 36, 1707 (1996).
  11. Z. Li and J. Wu, "Potential Distribution Theorem of the Polymer-induced depletion between Colloidal Particles", J. Chem. Phys., 126, 144904 (2007).
  12. C. Gogelein, G. Nagele, J. Buitenhuis, R. Tuinier, and J. K. G. Dhont, "Polymer Depletion-driven Cluster Aggregation and Initial Phase Separation in Charged Nanosized Colloids", J. Chem. Phys., 130, 204905 (2009).
  13. S. Ramakrishnan, M. Fuchs, K.S. Schweizer, and C.F. Zukoski, "Entropy-driven Phase Transitions in Colloid-Polymer Suspensions", J. Chem. Phys., 116, 2201 (2002).
  14. J. Y. Lee, G. A. Buxton, and A. C. Balazs, "Using Nanoparticles to Create Self-healing Composites", J. Chem. Phys., 1121, 5531 (2004).
  15. S. Tyagi, J. Y. Lee, G. A. Buxton, and A. C. Balazs, "Using Nanocomposite Coating to Heal Surface Defects", Macromolecules, 37, 9160 (2004).
  16. J. Y. Lee, Q. L. Zhang, T. Emricksas, and A. J. Crosby, "Nanoparticle Alignment and Repulsion during Failure of Glassy Polymer Nanocomposites", Macromolecules, 39, 7392 (2006).
  17. S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, and S. Viswanathan, "Autonomic Healing of Polymer Composites", Nature, 409, 794 (2001).
  18. E. N. Brown, M. R. Kessler, N. R. Sottos, and S. R. White, "In-situ Poly(urea-formaldehyde) Microencapsulation of Dicyclopentadiene", J. Microencapsulation, 20, 719 (2003).
  19. E. N. Brown, S. R. White, and N. R. Sottos, "Microcapsule Induced Toughening in a Self-healing Polymer Composite", J. Mater. Sci., 39, 1703 (2004).
  20. J. D. Rule, E. N. Brown, N. R. Sottos, S. R. White, and J. S. Moore, "Wax-protected Catalyst Microsheres for Efficient Self-healing Materials," Adv. Mater., 17, 205 (2005).
  21. S. H. Cho, S.R. White, and P.V. Braun, "Self-Healing Polymer Coatings", Adv. Mater.. 21, 645 (2009).
  22. C. M. Dry, "Self-repairing, Reinforced Matrix Materials", USP 7022179 (2006).
  23. J. W. C. Pang and I. P. Bond, "A Hollow Fibre Reinforced Polymer Composite Encompassing Self-healing and Enhanced Damage Visibility", Compos. Sci Technol., 65, 1791 (2005).
  24. R. S. Trask and I. P. Bond, "Biomimetic Self-healing of Advanced Composite Structures using Hollow Glass Fibres", Smart Mater. Struct., 15, 704 (2006).
  25. X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, and F. Wudl, "A Thermally Re-mendable Cross-linked Polymeric Material", Science, 295, 1698 (2002).
  26. F. Wudl, X. Chen, USP 2004014933 (2004).
  27. Y. L. Liu and Y. W. Chen, "Thermally Reversible Cross-linked Polyamides with High Toughness and Self-repairing Ability from Maleimide- and Furan- functionalized Aromatic Polyamides", Macromol. Chem. Phys., 208, 224 (2007).
  28. Y. L. Liu and C. Y. Hsieh, "Crosslinked Epoxy Materials Exhibiting Thermal Remendability and Removability from Multifunctional Maleimide and Furan Compounds", J. Polym. Sci.: Part A: Polym. Chem., 44, 905 (2004).
  29. E. B. Murphy, E. Bolanos, C. S. Hamann, F. Wudl, S. R. Nutt, and M. L. Auad, "Synthesis and Characterization of a Single-component Thermally Remendable Polymer Network", Macromolecules, 41, 5203 (2008).
  30. J. S. Park, K. Takahashi, Z. Guo, Y. Wang, et al., "Towards Development of a Self-healing Composite using a Mendable Polymer and Resistive Heating", J. Compos. Mater., 42, 2869 (2008).
  31. P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, and L. Leibler, "Self-healing and Thermoreversible Rubber from Supramolecular Assembly", Nature, 451, 977 (2008).
  32. K. P. Nair, V. Breedveld, and M. Weck, "Complementary Hydrogen-bonded Thermoreversible Polymer Networks with Tunable Properties", Macromolecules, 41, 3429 (2008).
  33. L. L. Freitas and R. Stadler, "Thermoplastic Elastomers by Hydrogen Bonding. 3", Macromolecules, 20, 2478 (1987).
  34. F. R. Kersey, D. M. Loveless, and S. L. Craig, "A Hybrid Polymer Gel with Controlled Rates of Cross-link Rupture and Self-repair", J. Royal Soc. Interface, 4, 373 (2007).
  35. A. S. Hay, "Polymerization by Oxidative Coupling: Discovery and Commercialization of PPO and Noryl Resins", J. Polym. Sci.: Part A: Polym. Chem., 36, 505 (1998).<505::AID-POLA1>3.0.CO;2-O
  36. J. Read and D. Whiteoak, "The Shell Bitumen Handbook", Shell, London (2003).
  37. S. Y. Lee, S. H. Mun, and Y. K. Hong, "Modification of Asphalt by in-situ Polymerization", Elast. Compos., 46, 257 (2011).
  38. F. E. Karasz and J. M. O'Reilly, "Thermal Properties of Poly(2,6-dimethyl phenylene ether)", J. Polym. Sci., Part B: Polym. Lett., 3, 561 (1965).
  39. W. A. Butte, C. C. Price, and R. E. Hughes, "Crystalline Poly(2,6-zylenol)", J. Polym. Sci., 61, S28 (1962).