DNA and the SU(3) Invariant of Knots and Links

Jeong, Myeong-Ju;Hong, Dae Gy

  • Received : 2012.05.10
  • Accepted : 2013.04.05
  • Published : 2013.09.23


To analyze the enzyme reaction on DNA knots and links, we study tangle embedding and the number of reaction. By using the quantum SU(3) invariant of knots and links we get a necessary condition for a tangle to be embedded in a knot or link. Moreover we give a relationship between the number of reactions and the changes of the value of quantum SU(3) invariant for the corresponding knots and links in a processive recombination.




  1. I. K. Darcy and D. W. Sumners, Ratioal tangle distance on knots and links, Math. Proc. Camb. Phil. Soc., 128, 2000, 497-510.
  2. M.-J. Jeong, Eun-Jin Kim and C.-Y. Park, Twist moves and Vassiliev invariants, to appear in J. of Knot Theory and Its Ramifications.
  3. D. A. Krebes, An obstruction to embedding 4-tangles in links, J. Knot Theory Ramif., 8(1999), 321-352.
  4. D. A. Krebes, D. S. Silver and S. G. Williams, Persistent invariants of tangles, Preprint.
  5. G. Kuperberg, The quantum $G_{2}$ link invariant, Preprint.
  6. J. C. Misra, S. Mukherjee and A. K. Das, A mathematical model for enzymatic Action on DNA knots and links, Mathematical and Computer Modelling, 39, 2004, 1423-1430.
  7. Y. Ohyama, A new numerical invariant of knots induced from regular diagrams, Topology and Its Applications 37(1990), 249-255.
  8. Y. Ohyama, Vassiliev invariants and similarity of knots, Proc. Amer. Math. Soc. 123(1993), 287-291.
  9. J. H. Przytycki, $t_{k}$ moves on links, Braids, Comtemp. Math. 78, Amer. Math. Soc., 1988, 615-656.
  10. J. H. Przytycki, $t_{3}$, $t_{4}$ moves conjecture for oriented links with matched diagrams, Math. Proc. Cambridge Phil. Soc., 108, 1990, 55-61.
  11. D. S. Silver and S. G. Williams, Virtual tangles and a theorem of Krebes, J. Knot Theory Ramifications 8(1999), 941-945.