DOI QR코드

DOI QR Code

New Subclasses of Harmonic Starlike and Convex Functions

Porwal, Saurabh;Dixit, Kaushal Kishore

  • Received : 2011.10.04
  • Accepted : 2012.11.07
  • Published : 2013.09.23

Abstract

The purpose of the present paper is to establish some interesting results involving coefficient conditions, extreme points, distortion bounds and covering theorems for the classes $V_H({\beta})$ and $U_H({\beta})$. Further, various inclusion relations are also obtained for these classes. We also discuss a class preserving integral operator and show that these classes are closed under convolution and convex combinations.

Keywords

Harmonic;analytic;univalent;starlike and convex functions

References

  1. O. P. Ahuja, Planar harmonic univalent and related mappings, J. Inequal. Pure Appl. Math., 6(4)(2005), Art. 122, 1-18.
  2. Y. Avci and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie-Sklodowska Sect., A44(1990), 1-7.
  3. J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser.AI Math., 9(1984), 3-25. https://doi.org/10.5186/aasfm.1984.0905
  4. K. K. Dixit and Vikas Chandra, On subclass of univalent functions with positive coefficients, Aligarh Bull. Math., 27(2)(2008), 87-93.
  5. K. K. Dixit and A. L. Pathak, A new class of analytic functions with positive coefficients, Indian J. Pure Appl. Math., 34(2)(2003), 209-218.
  6. K. K. Dixit and Saurabh Porwal, A subclass of harmonic univalent functions with positive coefficients, Tamkang J. Math., 41(3)(2010), 261-269.
  7. P. Duren, Harmonic mappings in the plane, Camb. Univ. Press, (2004).
  8. J. M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., 235(1999), 470-477. https://doi.org/10.1006/jmaa.1999.6377
  9. S. Ponnusamy and A. Rasila, Planar harmonic mappings, Ramanujan Mathematical Society Mathematics Newsletters, 17(2)(2007), 40-57.
  10. S. Ponnusamy and A. Rasila, Planar harmonic and quasi-conformal mappings, Ramanujan Mathematical Society Mathematics Newsletters, 17(3)(2007), 85-101.
  11. Saurabh Porwal and K. K. Dixit, An application of certain convolution operator involving hypergeometric functions, J. Raj. Acad. Phy. Sci., 9(2)(2010), 173-186.
  12. Saurabh Porwal, K. K. Dixit, Vinod Kumar and Poonam Dixit, On a subclass of analytic functions defined by convolution, General Mathematics, General Mathematics, 19(3)(2011), 57-65.
  13. H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116. https://doi.org/10.1090/S0002-9939-1975-0369678-0
  14. H. Silverman, Harmonic univalent function with negative coefficients, J. Math. Anal. Appl., 220(1998), 283-289. https://doi.org/10.1006/jmaa.1997.5882
  15. H. Silverman, E. M. Silvia, Subclasses of Harmonic univalent functions, New Zealand. J. Math., 28(1999), 275-284.
  16. B. A. Uralegaddi, M. D. Ganigi and S. M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math., 25(1994), 225-230.
  17. B. A. Uralegaddi, M. D. Ganigi and S. M. Sarangi, Close-to-Convex functions with positive coefficients, Studia Univ. Babes-Balyai, Mathematica, XL4(1995), 25-31.

Cited by

  1. Pascu-Type Harmonic Functions with Positive Coefficients Involving Salagean Operator vol.2014, 2014, https://doi.org/10.1155/2014/793709