DOI QR코드

DOI QR Code

INVOLUTIONS ON SURFACES OF GENERAL TYPE WITH pg = 0 I. THE COMPOSED CASE

Shin, YongJoo

  • Received : 2012.06.22
  • Published : 2013.07.31

Abstract

Let S be a minimal surface of general type with $p_g(S)=q(S)=0$ having an involution ${\sigma}$ over the field of complex numbers. It is well known that if the bicanonical map ${\varphi}$ of S is composed with ${\sigma}$, then the minimal resolution W of the quotient $S/{\sigma}$ is rational or birational to an Enriques surface. In this paper we prove that the surface W of S with $K^2_S=5,6,7,8$ having an involution ${\sigma}$ with which the bicanonical map ${\varphi}$ of S is composed is rational. This result applies in part to surfaces S with $K^2_S=5$ for which ${\varphi}$ has degree 4 and is composed with an involution ${\sigma}$. Also we list the examples available in the literature for the given $K^2_S$ and the degree of ${\varphi}$.

Keywords

involution;surface;of general type

References

  1. I. Bauer, F. Catanese, and R. Pignatelli, Surfaces of general type with geometric genus zero: a survey, math.AG/arXiv:1004.2583.
  2. E. Bombieri, Canonical models of surfaces of general type, Inst. Hautes Etudes Sci. Publ. Math. No. 42 (1973), 171-219.
  3. P. Burniat, Sur les surfaces de genre $P_{12}$ > 0, Ann. Mat. Pura Appl. (4) 71 (1966), 1-24. https://doi.org/10.1007/BF02413731
  4. A. Calabri, C. Ciliberto, and M. Mendes Lopes, Numerical Godeaux surfaces with an involution, Trans. Amer. Math. Soc. 359 (2007), no. 4, 1605-1632.
  5. A. Calabri, M. Mendes Lopes, and R. Pardini, Involutions on numerical Campedelli surfaces, Tohoku Math. J. (2) 60 (2008), no. 1, 1-22.
  6. L. Campedelli, Sopra alcuni piani doppi notevoli con curve di diramazione del decimo ordine, Atti Accad. Naz. Lincei 15 (1932), 536-542.
  7. I. Dolgachev, M. Mendes Lopes, and R. Pardini, Rational surfaces with many nodes, Compositio Math. 132 (2002), no. 3, 349-363. https://doi.org/10.1023/A:1016540925011
  8. M. Inoue, Some new surfaces of general type, Tokyo J. Math. 17 (1994), no. 2, 295-319. https://doi.org/10.3836/tjm/1270127954
  9. J. Keum, Some new surfaces of general type with $P_g$ = 0, preprint, 1988.
  10. J. Keum, Quotients of fake projective planes, Geom. Topol. 12 (2008), no. 4, 2497-2515. https://doi.org/10.2140/gt.2008.12.2497
  11. J. Keum and Y. Lee, Fixed locus of an involution acting on a Godeaux surface, Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 2, 205-216. https://doi.org/10.1017/S0305004100004497
  12. V. S. Kulikov, Old examples and a new example of surfaces of general type with $P_g$ = 0, (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004), no. 5, 123-170; translation in Izv. Math. 68 (2004), no. 5, 965-1008.
  13. Y. Lee and Y. Shin, Involutions on a surface of general type with $P_g$ = q = 0, $K^2$ = 7, Osaka J. Math. (to appear).
  14. M. Mendes Lopes and R. Pardini, The bicanonical map of surfaces with $P_g$ = 0 and $K^2{\geq}7$, Bull. London Math. Soc. 33 (2001), no. 3, 265-274. https://doi.org/10.1017/S0024609301008037
  15. M. Mendes Lopes and R. Pardini, A connected component of the moduli space of surfaces with $P_g$ = 0, Topology 40 (2001), no. 5, 977-991. https://doi.org/10.1016/S0040-9383(00)00004-5
  16. M. Mendes Lopes and R. Pardini, Enriques surfaces with eight nodes, Math. Z. 241 (2002), no. 4, 673-683. https://doi.org/10.1007/s00209-002-0432-8
  17. M. Mendes Lopes and R. Pardini, A new family of surfaces with $P_g$ = 0 and $K^2$ = 3, Ann. Sci. Ecole Norm. Sup. (4) 37 (2004), no. 4, 507-531. https://doi.org/10.1016/j.ansens.2004.04.001
  18. M. Mendes Lopes and R. Pardini, Surfaces of general type with $P_g$ = 0, $K^2$ = 6 and non birational bicanonical map, Math. Ann. 329 (2004), no. 3, 535-552.
  19. M. Mendes Lopes and R. Pardini, The degree of the bicanonical map of a surface with $P_g$ = 0, Proc. Amer. Math. Soc. 135 (2007), no. 5, 1279-1282. https://doi.org/10.1090/S0002-9939-06-08633-3
  20. M. Mendes Lopes and R. Pardini, Numerical Campedelli surfaces with fundamental group of order 9, J. Eur. Math. Soc. (JEMS) 10 (2008), no. 2, 457-476.
  21. D. Naie, Surfaces d'Enriques et une construction de surfaces de type general avec $P_g$ = 0, Math. Z. 215 (1994), no. 2, 269-280. https://doi.org/10.1007/BF02571715
  22. R. Pardini, The classification of double planes of general type with $K^2$ = 8 and $P_g$ = 0, J. Algebra 259 (2003), no. 1, 95-118. https://doi.org/10.1016/S0021-8693(02)00539-2
  23. C. A. M. Peters, On certain examples of surfaces with $P_g$ = 0 due to Burniat, Nagoya Math. J. 66 (1977), 109-119. https://doi.org/10.1017/S002776300001775X
  24. I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math. (2) 127 (1988), no. 2, 309-316. https://doi.org/10.2307/2007055
  25. C. Rito, Involutions on surfaces with $P_g$ = q = 1, Collect. Math. 61 (2010), no. 1, 81-106. https://doi.org/10.1007/BF03191228
  26. C. Rito, Involutions on surfaces with $P_g$ = q = 0 and $K^2$ = 3, Geom. Dedicata 157 (2012), 319-330. https://doi.org/10.1007/s10711-011-9612-1

Acknowledgement

Supported by : National Research Foundation of Korea