DOI QR코드

DOI QR Code

LAPLACIAN ON A QUANTUM HEISENBERG MANIFOLD

Lee, Hyun Ho

  • Received : 2012.05.25
  • Published : 2013.07.31

Abstract

In this paper we give a definition of the Hodge type Laplacian ${\Delta}$ on a non-commutative manifold which is the smooth dense subalgebra of a $C^*$-algebra. We prove that the Laplacian on a quantum Heisenberg manifold is an elliptic operator in the sense that $({\Delta}+1)^{-1}$ is compact.

Keywords

quantum Heisenberg manifolds;Laplacian;elliptic operator

References

  1. P. S. Chakraborty and K. B. Sinha, Geometry on the quantum Heisenberg manifold, J. Funct. Anal. 203 (2003), no. 2, 425-452. https://doi.org/10.1016/S0022-1236(03)00197-6
  2. C. Chevalley and S. Eilenberg, Cohomology theory of Lie-groups and Lie-algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124. https://doi.org/10.1090/S0002-9947-1948-0024908-8
  3. A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.
  4. A. Connes, C*-algebres et geometrie differentielle, C. R. Acad. Sci. Paris Ser. A-B 290 (1980), no. 13, A599-A604.
  5. A. Connes and M. Rieffel, Yang-Mills for noncommutative two-tori, Operator algebras and mathematical physics (Iowa City, Iowa, 1985), 237-266, Contemp. Math., 62, Amer. Math. Soc., Providence, RI, 1987.
  6. M. A. Rieffel, Projective modules over hinger-dimensinal non-commutative tori, Can. J. Math. 40 (1988), 257-338. https://doi.org/10.4153/CJM-1988-012-9
  7. M. A. Rieffel, Deformation quantization of Heisenberg manifolds, Comm. Math. Phys. 122 (1989), 531-562. https://doi.org/10.1007/BF01256492
  8. M. A. Rieffel, C*-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), 415-429. https://doi.org/10.2140/pjm.1981.93.415
  9. F. W. Warner, Foundations of Diffenrentiable Manifolds and Lie-Groups, Springer-Verlag, New York, 1983
  10. N. Weaver, Sub-Riemannian metrics for quantum Heisenberg manifolds, J. Operator Theory 43 (2000), no. 2,223-242

Cited by

  1. A note on nonlinear σ-models in noncommutative geometry vol.19, pp.01, 2016, https://doi.org/10.1142/S0219025716500065

Acknowledgement

Supported by : University of Ulsan